Math 260 May 2, 2012

DIRECTIONS This exam has two parts. PART A has 5 short answer questions (5 points each, so 25 points) while PART B has 8 traditional problems (10 points each, so 80 points). Total: 105 points. *Neatness counts.*

Closed book, no calculators, computers, ipods, cell phones, etc – but you may use one $3'' \times 5''$ card with notes on both sides.

PART A: Five short answer questions (5 points each, so 25 points).

- A-1. Let \mathcal{S} be the linear space of 2×2 matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with a+d=0. Compute the dimension of \mathcal{S} .
- A-2. Let V and W be linear spaces and $L: V \to W$ a linear map. Let w_1 and w_2 be in W. Say $v_1 \in V$ is a solution of $Lv_1 = w_1$ while both v_2 and v_3 are distinct points in V that satisfy $Lv_2 = Lv_3 = w_2$. Does the equation $Lx = w_1$ have a solution other than v_1 ? Explain your reasoning.
- A-3. Let f(t) be a smooth function of the real variable t. Show that for any real constants a and b, the function u(x,y) := f(ax + by) satisfies $u_{xx}u_{yy} u_{xy}^2 = 0$.
- A-4. Consider the surface defined implicitly by $x^2 + 9y^2 z^2 = 10$. Find a vector orthogonal to the tangent plane at (1, 1, 0).

A-5. Let $J := \int_0^2 \left(\int_0^{x^2} f(x, y) \, dy \right) \, dx$. Rewrite this as an iterated integral with the order of integration reversed, so one first integrates with respect to x.

PART B: Eight traditional problems (10 points each, so 80 points).

- B-1. Consider the set of real-valued continuous functions on the interval $-1 \le x \le 1$ with the inner product $\langle f, g \rangle := \int_{-1}^{1} f(x)g(x) dx$.
 - a) Find a quadratic polynomial $p(x) := a + bx + cx^2$ (with $a \neq 0$) that is orthogonal to both $e_1(x) := 1$ and $e_2(x) := x$.
 - b) Find the orthogonal projection of $q(x) := x^4$ into the subspace spanned by $e_1(x)$, $e_2(x)$, and p(x).

B-2. Find a solution of $u'' + 4u = x^2$ that satisfies the initial conditions u(0) = 0 and u'(0) = 0.

- B–3. Let A be a real $n \times n$ antisymmetric matrix.
 - a) Show that $\langle X, AX \rangle = 0$ for all vectors $X \in \mathbb{R}^n$.
 - b) Say X(t) is a solution of the differential equation $\frac{dX}{dt} = AX$. Show that ||X(t)|| =constant. [REMARK: In the special case $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ this implies $\sin^2 t + \cos^2 t = 1$.]

B-4. Find and classify the critical points of $g(x, y) := x^2 - 2xy + \frac{1}{3}y^3 - 3y$.

- B-5. Compute $\oint_{\gamma} 2x \, dy y \, dx$ where the closed curve γ is the triangle in \mathbb{R}^2 with vertices at (0,0), (1,0), and (1,2), traversed counterclockwise.
- B-6. Let $\mathbf{V} = (y^2 + x)\mathbf{i} + (2xy 3)\mathbf{j}$.
 - a) Find a function u(x, y) so that $\mathbf{V} = \nabla u$.
 - b) Let γ be the triangle bounded by the *x*-axis, the *y*-axis, and the straight line 2x + y = 2, traversed counterclockwise. Compute $\oint_{\gamma} \mathbf{V} \cdot d\mathbf{s}$.
- B-7. Consider the region $\Omega \subset \mathbb{R}^3$ above the surface $z = x^2 + y^2$ and below the plane z = 4. Compute $\iiint_{\Omega} 2z \, dV$.
- B-8. Let $\Omega \subset \mathbb{R}^2$ be a bounded open set with smooth boundary $\partial \Omega$ and let w(x, y, t) be the solution of the heat equation

 $w_t = \Delta w$ for all $(x, y) \in \Omega$ and $t \ge 0$, with w = 0 for (x, y) on $\partial \Omega$.

- a) Define $E(t) := \frac{1}{2} \iint_{\Omega} w^2(x, y, t) \, dx \, dy$. Show that $dE/dt \le 0$.
- b) If in addition the initial temperature w(x, y, 0) = 0, show that w(x, y, t) = 0 for all $(x, y) \in \Omega$ and $t \ge 0$.
- c) If u(x, y, t) and v(x, y, t) both satisfy the heat equation in Ω with u(x, y, t) = v(x, y, t)on $\partial \Omega$ for all $t \ge 0$ and also u(x, y, 0) = v(x, y, 0), show that u(x, y, t) = v(x, y, t) for all $(x, y) \in \Omega$ and $t \ge 0$.