Directions This exam has two parts. Part A has 5 short answer questions (5 points each, so 25 points) while Part B has 8 traditional problems (10 points each, so 80 points). Total: 105 points. Neatness counts.

Closed book, no calculators, computers, ipods, cell phones, etc - but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides.

Part A: Five short answer questions (5 points each, so 25 points).
A-1. Let \mathcal{S} be the linear space of 2×2 matrices $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a+d=0$. Compute the dimension of \mathcal{S}.

A-2. Let V and W be linear spaces and $L: V \rightarrow W$ a linear map. Let w_{1} and w_{2} be in W. Say $v_{1} \in V$ is a solution of $L v_{1}=w_{1}$ while both v_{2} and v_{3} are distinct points in V that satisfy $L v_{2}=L v_{3}=w_{2}$. Does the equation $L x=w_{1}$ have a solution other than v_{1} ? Explain your reasoning.

A-3. Let $f(t)$ be a smooth function of the real variable t. Show that for $a n y$ real constants a and b, the function $u(x, y):=f(a x+b y)$ satisfies $u_{x x} u_{y y}-u_{x y}^{2}=0$.

A-4. Consider the surface defined implicitly by $x^{2}+9 y^{2}-z^{2}=10$. Find a vector orthogonal to the tangent plane at $(1,1,0)$.

A-5. Let $J:=\int_{0}^{2}\left(\int_{0}^{x^{2}} f(x, y) d y\right) d x$. Rewrite this as an iterated integral with the order of integration reversed, so one first integrates with respect to x.

Part B: Eight traditional problems (10 points each, so 80 points).
B-1. Consider the set of real-valued continuous functions on the interval $-1 \leq x \leq 1$ with the inner product $\langle f, g\rangle:=\int_{-1}^{1} f(x) g(x) d x$.
a) Find a quadratic polynomial $p(x):=a+b x+c x^{2}$ (with $a \neq 0$) that is orthogonal to both $e_{1}(x):=1$ and $e_{2}(x):=x$.
b) Find the orthogonal projection of $q(x):=x^{4}$ into the subspace spanned by $e_{1}(x), e_{2}(x)$, and $p(x)$.

B-2. Find a solution of $u^{\prime \prime}+4 u=x^{2}$ that satisfies the initial conditions $u(0)=0$ and $u^{\prime}(0)=0$.

B-3. Let A be a real $n \times n$ antisymmetric matrix.
a) Show that $\langle X, A X\rangle=0$ for all vectors $X \in \mathbb{R}^{n}$.
b) Say $X(t)$ is a solution of the differential equation $\frac{d X}{d t}=A X$. Show that $\|X(t)\|=$ constant. [Remark: In the special case $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ this implies $\sin ^{2} t+\cos ^{2} t=1$.]

B-4. Find and classify the critical points of $g(x, y):=x^{2}-2 x y+\frac{1}{3} y^{3}-3 y$.
B-5. Compute $\oint_{\gamma} 2 x d y-y d x$ where the closed curve γ is the triangle in \mathbb{R}^{2} with vertices at $(0,0),(1,0)$, and $(1,2)$, traversed counterclockwise.

B-6. Let $\mathbf{V}=\left(y^{2}+x\right) \mathbf{i}+(2 x y-3) \mathbf{j}$.
a) Find a function $u(x, y)$ so that $\mathbf{V}=\nabla u$.
b) Let γ be the triangle bounded by the x-axis, the y-axis, and the straight line $2 x+y=2$, traversed counterclockwise. Compute $\oint_{\gamma} \mathbf{V} \cdot d \mathbf{s}$.

B-7. Consider the region $\Omega \subset \mathbb{R}^{3}$ above the surface $z=x^{2}+y^{2}$ and below the plane $z=4$. Compute $\iiint_{\Omega} 2 z d V$.

B-8. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded open set with smooth boundary $\partial \Omega$ and let $w(x, y, t)$ be the solution of the heat equation

$$
w_{t}=\Delta w \quad \text { for all }(x, y) \in \Omega \quad \text { and } t \geq 0, \quad \text { with } w=0 \quad \text { for }(x, y) \text { on } \partial \Omega .
$$

a) Define $E(t):=\frac{1}{2} \iint_{\Omega} w^{2}(x, y, t) d x d y$. Show that $d E / d t \leq 0$.
b) If in addition the initial temperature $w(x, y, 0)=0$, show that $w(x, y, t)=0$ for all $(x, y) \in \Omega$ and $t \geq 0$.
c) If $u(x, y, t)$ and $v(x, y, t)$ both satisfy the heat equation in Ω with $u(x, y, t)=v(x, y, t)$ on $\partial \Omega$ for all $t \geq 0$ and also $u(x, y, 0)=v(x, y, 0)$, show that $u(x, y, t)=v(x, y, t)$ for all $(x, y) \in \Omega$ and $t \geq 0$.

