Math 260 May 2, 2012

DIRECTIONS This exam has two parts. PART A has 5 short answer questions (5 points each, so 25 points) while PART B has 8 traditional problems (10 points each, so 80 points). Total: 105 points. *Neatness counts.*

Closed book, no calculators, computers, Pt's, cell phones, etc – but you may use one $3'' \times 5''$ card with notes on both sides.

PART A: Five short answer questions (5 points each, so 25 points).

A-1. Let \mathcal{S} be the linear space of 2×2 matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with a+d=0. Compute the dimension of \mathcal{S} .

Solution: Since d = -a, then

$$A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

so the dimension is 3.

A-2. Let V and W be linear spaces and $L: V \to W$ a linear map. Let w_1 and w_2 be in W. Say $v_1 \in V$ is a solution of $Lv_1 = w_1$ while both v_2 and v_3 are distinct points in V that satisfy $Lv_2 = Lv_3 = w_2$. Does the equation $Lx = w_1$ have a solution other than v_1 ? Explain your reasoning.

SOLUTION: Since $L((v_2 - v_3) = 0$, then $L(v_1 + v_2 - v_3) = Lv_1 = w_1$. Thus another solution is $v_1 + (v_2 - v_3)$.

A-3. Let f(t) be a smooth function of the real variable t. Show that for any real constants a and b, the function u(x,y) := f(ax + by) satisfies $u_{xx}u_{yy} - u_{xy}^2 = 0$.

SOLUTION: By the chain rule:

$$u_x(x,y) = f'(ax+by)a, \qquad u_y(x,y) = f'(ax+by)b,$$

$$u_{xx}(x,y) = f''(ax+by)a^2, \quad u_{xy}(x,y) = f''(ax+by)ab, \quad \text{and} \quad u_{yy}(x,y) = f''(ax+by)b^2.$$

The result is now clear.

A–4. Consider the surface defined implicitly by $x^2 + 9y^2 - z^2 = 10$. Find a vector orthogonal to the tangent plane at (1, 1, 0).

SOLUTION: If a surface is defined implicitly by f(x, y, z) = c, so it is a level surface of f, then its gradient, ∇f , is perpendicular to the surface (that is, it is orthogonal to the tangent plane). Since $\nabla(x^2 + 9y^2 - z^2) = (2x, 18y, -2z)$, then at the given point N := (2, 18, 0) is orthogonal to the tangent plane.

A-5. Let $J := \int_0^2 \left(\int_0^{x^2} f(x, y) \, dy \right) dx$. Rewrite this as an iterated integral with the order of integration reversed, so one first integrates with respect to x.

SOLUTION: The region of integration is bounded on the bottom by y = 0, on the left by the curve $y = x^2$, and on the right by x = 2. This if we interchange the order of integration

$$J = \int_0^4 \left(\int_{\sqrt{y}}^2 f(x,y) \, dx \right) \, dy.$$

PART B: Eight traditional problems (10 points each, so 80 points).

- B-1. Consider the set of real-valued continuous functions on the interval $-1 \le x \le 1$ with the inner product $\langle f, g \rangle := \int_{-1}^{1} f(x)g(x) dx$.
 - a) Find a quadratic polynomial $p(x) := a + bx + cx^2$ (with $a \neq 0$) that is orthogonal to both $e_1(x) := 1$ and $e_2(x) := x$.

Solution: We want $\langle p, e_1 \rangle = 0$ and $\langle p, e_2 \rangle = 0$. But

$$\langle p, e_1 \rangle = \int_{-1}^{1} (a + bx + cx^2) \, dx = 2(a + \frac{1}{3}c)$$

$$\langle p, e_2 \rangle = \int_{-1}^{1} (a + bx + cx^2) x \, dx = \frac{2}{3}b.$$

Thus c = -3a and b = 0. For instance, $p(x) = 1 - 3x^2$

b) Find the orthogonal projection of $q(x) := x^4$ into the subspace S spanned by $e_1(x)$, $e_2(x)$, and p(x).

SOLUTION: We want to write $x^4 = Ae_1 + Be_2 + Cp + w$ where w is orthogonal to e_1 , e_2 , and p. Thus

$$A = \frac{\langle x^4, e_1 \rangle}{\|e_1\|^2}, \qquad B = \frac{\langle x^4, e_2 \rangle}{\|e_2\|^2}, \qquad C = \frac{\langle x^4, p \rangle}{\|p\|^2}.$$

The computation is now straightforward – but tedious:

$$\begin{aligned} \|e_1\|^2 &= \int_{-1}^1 1^2 \, dx = 2, \qquad \|e_2\|^2 = \int_{-1}^1 x^2 \, dx = \frac{2}{3} \\ \|p\|^2 &= \int_{-1}^1 (1 - 3x^2)^2 \, dx = \int_{-1}^1 (1 - 6x^2 + 9x^4) \, dx = \frac{8}{5} \\ \langle x^4, \, e_1 \rangle &= \int_{-1}^1 x^4 \, dx = \frac{2}{5}, \qquad \langle x^4, \, e_2 \rangle = \int_{-1}^1 x^5 \, dx = 0 \\ \langle x^4, \, p \rangle &= \int_{-1}^1 x^4 - 3x^6 \, dx = \frac{2}{5} - \frac{6}{7} = -\frac{16}{35}. \end{aligned}$$

Consequently

$$A = \frac{1}{5}, \qquad B = 0, \qquad C = -\frac{2}{7}$$

 \mathbf{SO}

Projection_{*S*}(x⁴) =
$$\frac{1}{5} - \frac{2}{7}(1 - 3x^2) = -\frac{3}{35} + \frac{6}{7}x^2$$
.

B-2. Find a solution of $u'' + 4u = x^2$ that satisfies the initial conditions u(0) = 0 and u'(0) = 0.

SOLUTION: Seek a particular solution, u_p of the inhomogeneous equation in the form $u_p(x) = a + bx + cx^2$. Substituting this into the equation we get

$$2c + 4(a + bx + cx^2) = x^2$$

Thus c = 1/4 so a = -1/8 and b = 0. This gives $u_p(x) = -\frac{1}{8} + \frac{1}{4}x^2$.

Since the general solution of the homogeneous equation is $u_h(x) = A \cos 2x + B \sin 2x$, the general solution of the inhomogeneous equation is

$$u(x) = -\frac{1}{8} + \frac{1}{4}x^2 + A\cos 2x + B\sin 2x.$$

We pick the constants A and B to match the initial conditions:

$$0 = u(0) = -\frac{1}{8} + A$$
, and $0 = u'(0) = 2B$
which gives $u(x) = -\frac{1}{8} + \frac{1}{4}x^2 + \frac{1}{8}\cos 2x$.

B-3. Let A be a real $n \times n$ antisymmetric matrix.

- a) Show that $\langle X, AX \rangle = 0$ for all vectors $X \in \mathbb{R}^n$. SOLUTION: By definition of A^* and symmetry of the inner product we have $\langle X, AX \rangle = \langle A^*X, X \rangle = -\langle AX, X \rangle = -\langle X, AX \rangle$. Thus $2\langle X, AX \rangle = 0$.
- b) Say X(t) is a solution of the differential equation $\frac{dX}{dt} = AX$. Show that ||X(t)|| =constant. [REMARK: In the special case $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ this implies $\sin^2 t + \cos^2 t = 1$.] SOLUTION: By part a),

$$\frac{d\|X(t)\|^2}{dt} = 2\langle X(t), X'(t)\rangle = 2\langle X(t), AX(t)\rangle = 0.$$

B-4. Find and classify the critical points of $g(x,y) := x^2 - 2xy + \frac{1}{3}y^3 - 3y$.

SOLUTION: At a critical point: $0 = g_x = 2x - 2y$ and $0 = g_y = -2x + y^2 - 3$. The first equation gives x = y. Using this in the second equation we find $0 = y^2 - 2y - 3 = (y - 3)(y + 1)$. Consequently there are two critical points: (3, 3) and (-1, -1).

To classify these we compute the second derivative (Hessian) matrix

$$g''(x,y) = \begin{pmatrix} 2 & -2 \\ -2 & 2y \end{pmatrix}$$

This gives

$$g''(3,3) = \begin{pmatrix} 2 & -2 \\ -2 & 6 \end{pmatrix}$$
 and $g''(-1, -1) = \begin{pmatrix} 2 & -2 \\ -2 & -2 \end{pmatrix}$.

The first matrix is positive definite so (3, 3) is a local minimum. The second is indefinite (and non-degenerate) so (-1, -1) is a saddle point.

B-5. Compute $\oint_{\gamma} 2x \, dy - y \, dx$ where the closed curve γ is the triangle in \mathbb{R}^2 with vertices at (0,0), (1,0), and (1,2), traversed counterclockwise.

SOLUTION: The simplest approach is to use Stokes' Theorem, letting Ω be the interior of the triangle. This gives

$$\oint_{\gamma} 2x \, dy - y \, dx = \iint_{\Omega} (2+1) \, dA = 3 \text{Area} \left(\Omega\right) = 3.$$

B-6. Let $\mathbf{V} = (y^2 + x)\mathbf{i} + (2xy - 3)\mathbf{j}$.

a) Find a function u(x, y) so that $\mathbf{V} = \nabla u$.

SOLUTION: We want $u_x = y^2 + x$ and $u_y = 2xy - 3$. Integrating the first of these with respect to x we obtain $u(x,y) = xy^2 + \frac{1}{2}x^2 + h(y)$. Substituting this into the second equation we find 2xy + h'(y) = 2xy - 3. Thus h'(y) = -3 so h(y) = -3y + C, where C is any constant. Consequently

$$u(x,y) = xy^{2} + \frac{1}{2}x^{2} - 3y + C.$$

It is straightforward to check that this works. [In finding potential functions one almost always ignores the constant C].

b) Let γ be the triangle bounded by the *x*-axis, the *y*-axis, and the straight line 2x + y = 2, traversed counterclockwise. Compute $\oint \mathbf{V} \cdot d\mathbf{s}$.

SOLUTION: First note that if $\gamma(t)$, $a \le t \le b$ is any smooth curve, not necessarily closed, then

$$\int_{\gamma} \nabla u \cdot d\mathbf{s} = u(\gamma(b)) - u(\gamma(a))$$

In the special case of a closed curve, $\gamma(b) = \gamma(a)$ so the integral is zero. This is also an immediate consequence of Stokes' Theorem. B-7. Consider the region $\Omega \subset \mathbb{R}^3$ above the surface $z = x^2 + y^2$ and below the plane z = 4. Compute $J := \iiint_{\Omega} 2z \, dV$.

SOLUTION: There are many ways to do this. We use cylindrical coordinates. The paraboloid $z = x^2 + y^2$ intersects the plane z = 4 in the circle $x^2 + y^2 = 4$, that is, r = 2. Thus

$$J = \int_0^{2\pi} \left[\int_0^2 \left(\int_{r^2}^4 2z \, dz \right) \, r dr \right] \, d\theta$$

Now

$$\int_{r^2}^{4} 2z \, dz = z^2 \Big|_{r^2}^{4} = 16 - r^4.$$

Then

$$\int_0^2 (16 - r^4) r \, dr = 8r^2 - \frac{r^6}{6} \Big|_0^2 = 32 - \frac{32}{3} = \frac{64}{3}$$

Finally

$$J = \frac{64}{3} \int_0^{2\pi} d\theta = \frac{128\pi}{3}.$$

B-8. Let $\Omega \subset \mathbb{R}^2$ be a bounded open set with smooth boundary $\partial \Omega$ and let w(x, y, t) be the solution of the heat equation

 $w_t = \Delta w$ for all $(x, y) \in \Omega$ and $t \ge 0$, with w = 0 for (x, y) on $\partial \Omega$.

a) Define $E(t) := \frac{1}{2} \iint_{\Omega} w^2(x, y, t) \, dx \, dy$. Show that $dE/dt \le 0$.

SOLUTION: Using the heat equation and Green's first identity

$$\begin{split} \frac{dE}{dt} &= \iint_{\Omega} u(x, y, t) u_t(x, y, t) \, dA \\ &= \iint_{\Omega} u \Delta u \, dA \\ &= \int_{\partial \Omega} u \frac{\partial u}{\partial n} \, ds - \iint_{\Omega} |\nabla u|^2 \, dA. \end{split}$$

Since u = 0 on $\partial \Omega$, the first integral on the last line is zero. Because the second term is not positive we conclude that $dE/dt \leq 0$.

b) If in addition the initial temperature w(x, y, 0) = 0, show that w(x, y, t) = 0 for all $(x, y) \in \Omega$ and $t \ge 0$.

SOLUTION: From its definition, $E(t) \ge 0$. Because w(x, y, 0) = 0 we see that E(0) = 0. But $dE/dt \le 0$ so E(t) = 0 for all $t \ge 0$. In turn this implies that w(x, y, t) = 0 for all $t \ge 0$ since otherwise E(t) would be positive for some $t \ge 0$.

c) If u(x, y, t) and v(x, y, t) both satisfy the heat equation in Ω with u(x, y, t) = v(x, y, t)on $\partial \Omega$ for all $t \ge 0$ and also u(x, y, 0) = v(x, y, 0), show that u(x, y, t) = v(x, y, t) for all $(x, y) \in \Omega$ and $t \ge 0$.

SOLUTION: Let w(x, y, t) := u(x, y, t) - v(x, y, t) and apply the result of part b).