
Math 260 Final Exam Jerry L. Kazdan
May 2, 2012 9:00 – 11:00

Directions This exam has two parts. Part A has 5 short answer questions (5 points each, so 25
points) while Part B has 8 traditional problems (10 points each, so 80 points). Total: 105 points.
Neatness counts.

Closed book, no calculators, computers, Pt’s, cell phones, etc – but you may use one 3′′ × 5′′ card
with notes on both sides.

Part A: Five short answer questions (5 points each, so 25 points).

A–1. Let S be the linear space of 2×2 matrices A =
(

a b
c d

)

with a+d = 0. Compute the dimension
of S .

Solution: Since d = −a , then

A =

(

a b
c −a

)

= a

(

1 0
0 −1

)

+ b

(

0 1
0 0

)

+ c

(

0 0
1 0

)

,

so the dimension is 3.

A–2. Let V and W be linear spaces and L : V → W a linear map. Let w1 and w2 be in W . Say
v1 ∈ V is a solution of Lv1 = w1 while both v2 and v3 are distinct points in V that satisfy
Lv2 = Lv3 = w2 . Does the equation Lx = w1 have a solution other than v1? Explain your
reasoning.

Solution: Since L((v2 − v3) = 0, then L(v1 + v2 − v3) = Lv1 = w1 . Thus another solution
is v1 + (v2 − v3).

A–3. Let f(t) be a smooth function of the real variable t . Show that for any real constants a and
b , the function u(x, y) := f(ax + by) satisfies uxxuyy − u2

xy = 0.

Solution: By the chain rule:

ux(x, y) = f ′(ax + by)a, uy(x, y) = f ′(ax + by)b,

uxx(x, y) = f ′′(ax + by)a2, uxy(x, y) =f ′′(ax + by)ab, and uyy(x, y) = f ′′(ax + by)b2.

The result is now clear.

A–4. Consider the surface defined implicitly by x2 + 9y2 − z2 = 10. Find a vector orthogonal to
the tangent plane at (1, 1, 0).

Solution: If a surface is defined implicitly by f(x, y, z) = c , so it is a level surface of f ,
then its gradient, ∇f , is perpendicular to the surface (that is, it is orthogonal to the tangent
plane). Since ∇(x2 + 9y2 − z2) = (2x, 18y,−2z), then at the given point N := (2, 18, 0) is
orthogonal to the tangent plane.
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A–5. Let J :=

∫

2

0

(

∫ x2

0

f(x, y) dy

)

dx . Rewrite this as an iterated integral with the order of

integration reversed, so one first integrates with respect to x .

Solution: The region of integration is bounded on the bottom by y = 0, on the left by the
curve y = x2 , and on the right by x = 2. This if we interchange the order of integration

J =

∫

4

0

(

∫

2

√
y

f(x, y) dx

)

dy.

Part B: Eight traditional problems (10 points each, so 80 points).

B–1. Consider the set of real-valued continuous functions on the interval −1 ≤ x ≤ 1 with the
inner product 〈f, g〉 :=

∫

1

−1
f(x)g(x) dx .

a) Find a quadratic polynomial p(x) := a + bx + cx2 (with a 6= 0) that is orthogonal to both
e1(x) := 1 and e2(x) := x .

Solution: We want 〈p, e1〉 = 0 and 〈p, e2〉 = 0. But

〈p, e1〉 =

∫

1

−1

(a + bx + cx2) dx = 2(a + 1

3
c)

〈p, e2〉 =

∫

1

−1

(a + bx + cx2)x dx = 2

3
b.

Thus c = −3a and b = 0. For instance, p(x) = 1 − 3x2

b) Find the orthogonal projection of q(x) := x4 into the subspace S spanned by e1(x), e2(x),
and p(x).

Solution: We want to write x4 = Ae1 + Be2 + Cp + w where w is orthogonal to e1 ,
e2 , and p . Thus

A =
〈x4, e1〉

‖e1‖2
, B =

〈x4, e2〉

‖e2‖2
, C =

〈x4, p〉

‖p‖2
.

The computation is now straightforward – but tedious:

‖e1‖
2 =

∫

1

−1

12 dx = 2, ‖e2‖
2 =

∫

1

−1

x2 dx =
2

3

‖p‖2 =

∫

1

−1

(1 − 3x2)2 dx =

∫

1

−1

(1 − 6x2 + 9x4) dx =
8

5

〈x4, e1〉 =

∫

1

−1

x4 dx =
2

5
, 〈x4, e2〉 =

∫

1

−1

x5 dx = 0

〈x4, p〉 =

∫

1

−1

x4 − 3x6 dx =
2

5
−

6

7
= −

16

35
.
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Consequently

A =
1

5
, B = 0, C = −

2

7
so

ProjectionS(x4) =
1

5
−

2

7
(1 − 3x2) = −

3

35
+

6

7
x2.

B–2. Find a solution of u′′ + 4u = x2 that satisfies the initial conditions u(0) = 0 and u′(0) = 0.

Solution: Seek a particular solution, up of the inhomogeneous equation in the form up(x) =
a + bx + cx2 . Substituting this into the equation we get

2c + 4(a + bx + cx2) = x2.

Thus c = 1/4 so a = −1/8 and b = 0. This gives up(x) = −1

8
+ 1

4
x2 .

Since the general solution of the homogeneous equation is uh(x) = A cos 2x + B sin 2x , the
general solution of the inhomogeneous equation is

u(x) = −
1

8
+

1

4
x2 + A cos 2x + B sin 2x.

We pick the constants A and B to match the initial conditions:

0 = u(0) = −
1

8
+ A, and 0 = u′(0) = 2B

which gives u(x) = −1

8
+ 1

4
x2 + 1

8
cos 2x .

B–3. Let A be a real n × n antisymmetric matrix.

a) Show that 〈X, AX〉 = 0 for all vectors X ∈ R
n .

Solution: By definition of A∗ and symmetry of the inner product we have 〈X, AX〉 =
〈A∗X, X〉 = −〈AX, X〉 = −〈X, AX〉 . Thus 2〈X, AX〉 = 0.

b) Say X(t) is a solution of the differential equation
dX

dt
= AX . Show that ‖X(t)‖ =

constant. [Remark: In the special case A =
(

0 1

−1 0

)

this implies sin2 t + cos2 t = 1.]

Solution: By part a),

d‖X(t)‖2

dt
= 2〈X(t), X ′(t)〉 = 2〈X(t), AX(t)〉 = 0.

B–4. Find and classify the critical points of g(x, y) := x2 − 2xy + 1

3
y3 − 3y .

Solution: At a critical point: 0 = gx = 2x − 2y and 0 = gy = −2x + y2 − 3. The first
equation gives x = y . Using this in the second equation we find 0 = y2−2y−3 = (y−3)(y+1).
Consequently there are two critical points: (3, 3) and (−1, −1).
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To classify these we compute the second derivative (Hessian) matrix

g′′(x, y) =

(

2 −2
−2 2y

)

.

This gives

g′′(3, 3) =

(

2 −2
−2 6

)

and g′′(−1, −1) =

(

2 −2
−2 −2

)

.

The first matrix is positive definite so (3, 3) is a local minimum. The second is indefinite (and
non-degenerate) so (−1, −1) is a saddle point.

B–5. Compute

∮

γ

2x dy − y dx where the closed curve γ is the triangle in R
2 with vertices at

(0, 0), (1, 0), and (1, 2), traversed counterclockwise.

Solution: The simplest approach is to use Stokes’ Theorem, letting Ω be the interior of the
triangle. This gives

∮

γ

2x dy − y dx =

∫∫

Ω

(2 + 1) dA = 3Area (Ω) = 3.

B–6. Let V = (y2 + x)i + (2xy − 3)j .

a) Find a function u(x, y) so that V = ∇u .

Solution: We want ux = y2 + x and uy = 2xy − 3. Integrating the first of these with
respect to x we obtain u(x, y) = xy2 + 1

2
x2 + h(y). Substituting this into the second

equation we find 2xy + h′(y) = 2xy − 3. Thus h′(y) = −3 so h(y) = −3y + C , where C
is any constant. Consequently

u(x, y) = xy2 +
1

2
x2 − 3y + C.

It is straightforward to check that this works. [In finding potential functions one almost
always ignores the constant C ].

b) Let γ be the triangle bounded by the x-axis, the y -axis, and the straight line 2x + y = 2,

traversed counterclockwise. Compute

∮

γ

V · ds .

Solution: First note that if γ(t), a ≤ t ≤ b is any smooth curve, not necessarily closed,
then

∫

γ

∇u · ds = u(γ(b)) − u(γ(a)).

In the special case of a closed curve, γ(b) = γ(a) so the integral is zero.

This is also an immediate consequence of Stokes’ Theorem.
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B–7. Consider the region Ω ⊂ R
3 above the surface z = x2 + y2 and below the plane z = 4.

Compute J :=

∫∫∫

Ω

2z dV .

Solution: There are many ways to do this. We use cylindrical coordinates. The paraboloid
z = x2 + y2 intersects the plane z = 4 in the circle x2 + y2 = 4, that is, r = 2. Thus

J =

∫

2π

0

[
∫

2

0

(
∫

4

r2

2z dz

)

rdr

]

dθ.

Now
∫

4

r2

2z dz = z2
4

r2
= 16 − r4.

Then
∫

2

0

(16 − r4)r dr = 8r2 −
r6

6

2

0

= 32 −
32

3
=

64

3
.

Finally

J =
64

3

∫

2π

0

dθ =
128π

3
.

B–8. Let Ω ⊂ R
2 be a bounded open set with smooth boundary ∂Ω and let w(x, y, t) be the

solution of the heat equation

wt = ∆w for all (x, y) ∈ Ω and t ≥ 0, with w = 0 for (x, y) on ∂Ω.

a) Define E(t) :=
1

2

∫∫

Ω

w2(x, y, t) dx dy . Show that dE/dt ≤ 0.

Solution: Using the heat equation and Green’s first identity

dE

dt
=

∫∫

Ω

u(x, y, t)ut(x, y, t) dA

=

∫∫

Ω

u∆u dA

=

∫

∂Ω

u
∂u

∂n
ds −

∫∫

Ω

|∇u|2 dA.

Since u = 0 on ∂Ω, the first integral on the last line is zero. Because the second term is
not positive we conclude that dE/dt ≤ 0.

b) If in addition the initial temperature w(x, y, 0) = 0, show that w(x, y, t) = 0 for all
(x, y) ∈ Ω and t ≥ 0.

Solution: From its definition, E(t) ≥ 0. Because w(x, y, 0) = 0 we see that E(0) = 0.
But dE/dt ≤ 0 so E(t) = 0 for all t ≥ 0. In turn this implies that w(x, y, t) = 0 for all
t ≥ 0 since otherwise E(t) would be positive for some t ≥ 0.

c) If u(x, y, t) and v(x, y, t) both satisfy the heat equation in Ω with u(x, y, t) = v(x, y, t)
on ∂Ω for all t ≥ 0 and also u(x, y, 0) = v(x, y, 0), show that u(x, y, t) = v(x, y, t) for all
(x, y) ∈ Ω and t ≥ 0.

Solution: Let w(x, y, t) := u(x, y, t) − v(x, y, t) and apply the result of part b).
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