Math 260 Final Exam Jerry L. Kazdan
May 2, 2012 9:00 — 11:00

DIRECTIONS This exam has two parts. PART A has 5 short answer questions (5 points each, so 25
points) while PART B has 8 traditional problems (10 points each, so 80 points). Total: 105 points.
Neatness counts.

Closed book, no calculators, computers, Pt’s, cell phones, etc — but you may use one 3" x 5” card
with notes on both sides.

PART A: Five short answer questions (5 points each, so 25 points).

A-1. Let S be the linear space of 2x2 matrices A = (g 3) with a+d = 0. Compute the dimension
of S.

SOLUTION: Since d = —a, then

a=(t D=a(y ) eo(S D)t D),

so the dimension is 3.

A-2. Let V and W be linear spaces and L : V — W a linear map. Let w; and wy be in W. Say
v1 € V is a solution of Lvy = wy while both vy and v3 are distinct points in V' that satisfy
Lvy = Lvg = wy. Does the equation Lz = w; have a solution other than v;? Explain your
reasoning.

SOLUTION: Since L((vy —v3) =0, then L(v; + vy — v3) = Lv; = wy. Thus another solution
is v1 + (UQ — 7)3).

A-3. Let f(t) be a smooth function of the real variable ¢. Show that for any real constants a and

b, the function u(z,y) := f(ax + by) satisfies ugptiyy —u2, = 0.

SoLuTIiON: By the chain rule:

ug(7,y) = f'laz +byla,  uy(z,y) = f'(az + by)b,
Uao(2,y) = f"(ax +by)a®,  ugy(w,y) =f"(ax +by)ab, and uyy(z,y) = f"(az + by)b>.

The result is now clear.

A-4. Consider the surface defined implicitly by 22 + 9y% — 22 = 10. Find a vector orthogonal to
the tangent plane at (1, 1, 0).

SOLUTION: If a surface is defined implicitly by f(z,y,2) = ¢, so it is a level surface of f,
then its gradient, V f, is perpendicular to the surface (that is, it is orthogonal to the tangent
plane). Since V(z? + 9y? — 22) = (2, 18y, —2z), then at the given point N := (2, 18,0) is
orthogonal to the tangent plane.



2 x2
A-5. Let J := / / f(z,y)dy | dx. Rewrite this as an iterated integral with the order of
0 0
integration reversed, so one first integrates with respect to x.

SoLUTION: The region of integration is bounded on the bottom by y = 0, on the left by the
curve y = x2, and on the right by = = 2. This if we interchange the order of integration

J:/04 (/;f(x,y)dx> dy.

PARrT B: Eight traditional problems (10 points each, so 80 points).

B-1. Consider the set of real-valued continuous functions on the interval —1 < z < 1 with the
inner product (f, g) := fil f(x)g(x)dx.
a) Find a quadratic polynomial p(z) := a + bz + cx?® (with a # 0) that is orthogonal to both
ei(xz) =1 and es(x) :=x.

SoLUTION: We want (p, e;) =0 and (p, e2) = 0. But

1
<p7 €1> :/1(a+b1‘—|—c.1‘2) dx = 2(a_|_ %C)

1
(p, €2) :/1(a + bx + C.’E2)$ dx = %b.

Thus ¢ = —3a and b= 0. For instance, p(z) = 1 — 322

b) Find the orthogonal projection of g(x) := 2 into the subspace S spanned by e (z), es(z),
and p(x).

SOLUTION: We want to write 2* = Ae; + Bey + Cp + w where w is orthogonal to ey,
ez, and p. Thus

<x47 €1> <x47 62> <$47 p>

llexl® lleall* Ipl*

The computation is now straightforward — but tedious:

1 1 9
et = [ =2 Jel= [ Pa=]
-1 —1 3

1 1
Ipll? = /1<1 32224y — /1<1 a4 0ty do = 2

1 9 1
(z*, e)) = / ot de = 5 (xh, eg) = / 2°dr =0

-1 -1

1 2 6 16

4 4 6
p) = —3xPdr=—-— - =——.
(x*, p) /1“" 5 7 35



Consequently

1 2
A=-— B=0 C=——
5 ’ 7
> 12 3 6
rojectiong(z”) E 7( 3x) 35 + T

B-2. Find a solution of u” + 4u = x? that satisfies the initial conditions u(0) = 0 and u'(0) = 0.

SOLUTION: Seek a particular solution, u, of the inhomogeneous equation in the form u,(x) =
a + bz + cx?. Substituting this into the equation we get

2¢ + 4(a + bx + ca?) = 2%

2

Thus ¢ =1/4 so a=—1/8 and b= 0. This gives u,(z) = —% + 2.

1

1

Since the general solution of the homogeneous equation is wup(x) = Acos2x + Bsin2x, the
general solution of the inhomogeneous equation is

1 1
u(z) = ~3 + ZmQ + Acos2x 4+ Bsin2x.

We pick the constants A and B to match the initial conditions:

1
0=u(0) = ~3 + A, and 0=4/(0)=2B

which gives | u(z) = —% + 1% + L cos 2z |

B-3. Let A be a real n x n antisymmetric matrix.
a) Show that (X, AX) =0 for all vectors X € R".
SOLUTION: By definition of A* and symmetry of the inner product we have (X, AX) =
(A*X, X) = —(AX, X) = —(X, AX). Thus 2(X, AX) = 0.
b) Say X(¢) is a solution of the differential equation Cil—)t( = AX. Show that | X(¢)| =
constant. [REMARK: In the special case A = (_{ ) this implies sin’¢ + cos>¢ = 1.]
SOLUTION: By part a),

dx ()2 _

= 2X (1), X'(t)) = 2(X(t), AX(t)) = 0.

B-4. Find and classify the critical points of g(z,y) := 2* — 2zy + §y° — 3y.

SOLUTION: At a critical point: 0 = g, = 20 — 2y and 0 = g, = —22 + y? — 3. The first
equation gives x = y. Using this in the second equation we find 0 = y?>—2y—3 = (y—3)(y+1).
Consequently there are two critical points: (3, 3) and (-1, —1).



To classify these we compute the second derivative (Hessian) matrix
2 -2
" -

g”(3,3):<_3 _2) and ¢"(-1, —1)=<_§ :;)

The first matrix is positive definite so (3, 3) is a local minimum. The second is indefinite (and
non-degenerate) so (—1, —1) is a saddle point.

This gives

B-5. Compute 7{ 2xdy — ydxr where the closed curve v is the triangle in R? with vertices at
gl
(0,0), (1,0), and (1,2), traversed counterclockwise.

SoLUTION: The simplest approach is to use Stokes’ Theorem, letting €2 be the interior of the
triangle. This gives

}1{21‘dy—yd:1:://(2+1)dA:3Area(Q):3.
o7 Q

B-6. Let V = (y? + )i+ (2zy — 3)j.
a) Find a function u(z,y) so that V = Vu.
SoLUTION: We want u, = y> + 2 and uy = 2xy — 3. Integrating the first of these with
. . 2 1.2 . . ..
respect to x we obtain w(x,y) = xy® + 52° 4+ h(y). Substituting this into the second

equation we find 2zy + h/(y) = 22y — 3. Thus h'(y) = —3 so h(y) = =3y + C, where C
is any constant. Consequently

1
u(z,y) = zy? + 5:1:2 -3y +C.

It is straightforward to check that this works. [In finding potential functions one almost
always ignores the constant C'.
b) Let v be the triangle bounded by the z-axis, the y-axis, and the straight line 2z +y = 2,

traversed counterclockwise. Compute ¢ V -ds.

v
SOLUTION: First note that if v(t), a <t < bis any smooth curve, not necessarily closed,
then

/ V- ds = u(y(b)) — ul+(a).

In the special case of a closed curve, v(b) = 7(a) so the integral is zero.
This is also an immediate consequence of Stokes’ Theorem.



B-7. Consider the region Q C R? above the surface z = 22 + y? and below the plane z = 4.

Compute J := /// 2zdV .
Q

SOLUTION: There are many ways to do this. We use cylindrical coordinates. The paraboloid
z = 22 + y? intersects the plane z = 4 in the circle 2% 4+ y? = 4, that is, r = 2. Thus

J:/O27r [/02 (/:QZdz> rdr} do.

Now
4 4
/QZdz—z =16—r
r2 r?
Then ) 610
32 64
16— ryrdr=8r2 — | =32 2222
/0( r)rdr = 8r 5o 3 3
Finally
4 12
g 64 o, 128
3 Jo 3

B-8. Let Q C R? be a bounded open set with smooth boundary 9Q and let w(z,y,t) be the
solution of the heat equation

a)

wy =Aw for all (x,y) € Q2 andt >0, with w=0 for (x,y) on 0.

Define E(t // (x,y,t)drdy. Show that dE/dt <O0.

SoruTIiON: Using the heat equation and Green’s first identity

aE :// u(z, y, thu(z, y,t) dA
// wAudA
_/ u—ds—/ [Vul? dA.

Since u = 0 on 012, the first integral on the last line is zero. Because the second term is
not positive we conclude that dE/dt < 0.

If in addition the initial temperature w(x,y,0) = 0, show that w(z,y,t) = 0 for all
(x,y) € Q and t > 0.

SOLUTION: From its definition, E(¢) > 0. Because w(z,y,0) = 0 we see that E(0) =0.
But dE/dt <0 so E(t) =0 for all ¢ > 0. In turn this implies that w(x,y,t) = 0 for all
t > 0 since otherwise E(t) would be positive for some ¢ > 0.

If w(z,y,t) and v(x,y,t) both satisfy the heat equation in Q with u(z,y,t) = v(z,y,t)
on 9N for all ¢ > 0 and also u(x,y,0) = v(x,y,0), show that u(x,y,t) = v(z,y,t) for all
(x,y) € Q and t > 0.

SOLUTION: Let w(zx,y,t) = u(z,y,t) —v(x,y,t) and apply the result of part b).



