Directions This exam has two parts. Part A has 5 short answer questions (5 points each, so 25 points) while Part B has 8 traditional problems (10 points each, so 80 points). Total: 105 points. Neatness counts.
Closed book, no calculators, computers, Pt's, cell phones, etc - but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides.

Part A: Five short answer questions (5 points each, so 25 points).
A-1. Let \mathcal{S} be the linear space of 2×2 matrices $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a+d=0$. Compute the dimension of \mathcal{S}.

Solution: Since $d=-a$, then

$$
A=\left(\begin{array}{rr}
a & b \\
c & -a
\end{array}\right)=a\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),
$$

so the dimension is 3 .

A -2 . Let V and W be linear spaces and $L: V \rightarrow W$ a linear map. Let w_{1} and w_{2} be in W. Say $v_{1} \in V$ is a solution of $L v_{1}=w_{1}$ while both v_{2} and v_{3} are distinct points in V that satisfy $L v_{2}=L v_{3}=w_{2}$. Does the equation $L x=w_{1}$ have a solution other than v_{1} ? Explain your reasoning.

Solution: Since $L\left(\left(v_{2}-v_{3}\right)=0\right.$, then $L\left(v_{1}+v_{2}-v_{3}\right)=L v_{1}=w_{1}$. Thus another solution is $v_{1}+\left(v_{2}-v_{3}\right)$.

A-3. Let $f(t)$ be a smooth function of the real variable t. Show that for any real constants a and b, the function $u(x, y):=f(a x+b y)$ satisfies $u_{x x} u_{y y}-u_{x y}^{2}=0$.
Solution: By the chain rule:

$$
\begin{gathered}
u_{x}(x, y)=f^{\prime}(a x+b y) a, \quad u_{y}(x, y)=f^{\prime}(a x+b y) b, \\
u_{x x}(x, y)=f^{\prime \prime}(a x+b y) a^{2}, \quad u_{x y}(x, y)=f^{\prime \prime}(a x+b y) a b, \quad \text { and } \quad u_{y y}(x, y)=f^{\prime \prime}(a x+b y) b^{2} .
\end{gathered}
$$

The result is now clear.

A-4. Consider the surface defined implicitly by $x^{2}+9 y^{2}-z^{2}=10$. Find a vector orthogonal to the tangent plane at $(1,1,0)$.

Solution: If a surface is defined implicitly by $f(x, y, z)=c$, so it is a level surface of f, then its gradient, ∇f, is perpendicular to the surface (that is, it is orthogonal to the tangent plane). Since $\nabla\left(x^{2}+9 y^{2}-z^{2}\right)=(2 x, 18 y,-2 z)$, then at the given point $N:=(2,18,0)$ is orthogonal to the tangent plane.

A-5. Let $J:=\int_{0}^{2}\left(\int_{0}^{x^{2}} f(x, y) d y\right) d x$. Rewrite this as an iterated integral with the order of integration reversed, so one first integrates with respect to x.

Solution: The region of integration is bounded on the bottom by $y=0$, on the left by the curve $y=x^{2}$, and on the right by $x=2$. This if we interchange the order of integration

$$
J=\int_{0}^{4}\left(\int_{\sqrt{y}}^{2} f(x, y) d x\right) d y
$$

Part B: Eight traditional problems (10 points each, so 80 points).
B-1. Consider the set of real-valued continuous functions on the interval $-1 \leq x \leq 1$ with the inner product $\langle f, g\rangle:=\int_{-1}^{1} f(x) g(x) d x$.
a) Find a quadratic polynomial $p(x):=a+b x+c x^{2}($ with $a \neq 0)$ that is orthogonal to both $e_{1}(x):=1$ and $e_{2}(x):=x$.
Solution: We want $\left\langle p, e_{1}\right\rangle=0$ and $\left\langle p, e_{2}\right\rangle=0$. But

$$
\begin{aligned}
& \left\langle p, e_{1}\right\rangle=\int_{-1}^{1}\left(a+b x+c x^{2}\right) d x=2\left(a+\frac{1}{3} c\right) \\
& \left\langle p, e_{2}\right\rangle=\int_{-1}^{1}\left(a+b x+c x^{2}\right) x d x=\frac{2}{3} b .
\end{aligned}
$$

Thus $c=-3 a$ and $b=0$. For instance, $p(x)=1-3 x^{2}$
b) Find the orthogonal projection of $q(x):=x^{4}$ into the subspace \mathcal{S} spanned by $e_{1}(x), e_{2}(x)$, and $p(x)$.
Solution: We want to write $x^{4}=A e_{1}+B e_{2}+C p+w$ where w is orthogonal to e_{1}, e_{2}, and p. Thus

$$
A=\frac{\left\langle x^{4}, e_{1}\right\rangle}{\left\|e_{1}\right\|^{2}}, \quad B=\frac{\left\langle x^{4}, e_{2}\right\rangle}{\left\|e_{2}\right\|^{2}}, \quad C=\frac{\left\langle x^{4}, p\right\rangle}{\|p\|^{2}} .
$$

The computation is now straightforward - but tedious:

$$
\begin{gathered}
\left\|e_{1}\right\|^{2}=\int_{-1}^{1} 1^{2} d x=2, \quad\left\|e_{2}\right\|^{2}=\int_{-1}^{1} x^{2} d x=\frac{2}{3} \\
\|p\|^{2}=\int_{-1}^{1}\left(1-3 x^{2}\right)^{2} d x=\int_{-1}^{1}\left(1-6 x^{2}+9 x^{4}\right) d x=\frac{8}{5} \\
\left\langle x^{4}, e_{1}\right\rangle=\int_{-1}^{1} x^{4} d x=\frac{2}{5}, \quad\left\langle x^{4}, e_{2}\right\rangle=\int_{-1}^{1} x^{5} d x=0 \\
\left\langle x^{4}, p\right\rangle=\int_{-1}^{1} x^{4}-3 x^{6} d x=\frac{2}{5}-\frac{6}{7}=-\frac{16}{35}
\end{gathered}
$$

Consequently

$$
A=\frac{1}{5}, \quad B=0, \quad C=-\frac{2}{7}
$$

so

$$
\operatorname{Projection}_{\mathcal{S}}\left(x^{4}\right)=\frac{1}{5}-\frac{2}{7}\left(1-3 x^{2}\right)=-\frac{3}{35}+\frac{6}{7} x^{2}
$$

B-2. Find a solution of $u^{\prime \prime}+4 u=x^{2}$ that satisfies the initial conditions $u(0)=0$ and $u^{\prime}(0)=0$.
Solution: Seek a particular solution, u_{p} of the inhomogeneous equation in the form $u_{p}(x)=$ $a+b x+c x^{2}$. Substituting this into the equation we get

$$
2 c+4\left(a+b x+c x^{2}\right)=x^{2}
$$

Thus $c=1 / 4$ so $a=-1 / 8$ and $b=0$. This gives $u_{p}(x)=-\frac{1}{8}+\frac{1}{4} x^{2}$.
Since the general solution of the homogeneous equation is $u_{h}(x)=A \cos 2 x+B \sin 2 x$, the general solution of the inhomogeneous equation is

$$
u(x)=-\frac{1}{8}+\frac{1}{4} x^{2}+A \cos 2 x+B \sin 2 x .
$$

We pick the constants A and B to match the initial conditions:

$$
0=u(0)=-\frac{1}{8}+A, \quad \text { and } \quad 0=u^{\prime}(0)=2 B
$$

which gives $u(x)=-\frac{1}{8}+\frac{1}{4} x^{2}+\frac{1}{8} \cos 2 x$.
B-3. Let A be a real $n \times n$ antisymmetric matrix.
a) Show that $\langle X, A X\rangle=0$ for all vectors $X \in \mathbb{R}^{n}$.

Solution: By definition of A^{*} and symmetry of the inner product we have $\langle X, A X\rangle=$ $\left\langle A^{*} X, X\right\rangle=-\langle A X, X\rangle=-\langle X, A X\rangle$. Thus $2\langle X, A X\rangle=0$.
b) Say $X(t)$ is a solution of the differential equation $\frac{d X}{d t}=A X$. Show that $\|X(t)\|=$ constant. [Remark: In the special case $A=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$ this implies $\sin ^{2} t+\cos ^{2} t=1$.]
Solution: By part a),

$$
\frac{d\|X(t)\|^{2}}{d t}=2\left\langle X(t), X^{\prime}(t)\right\rangle=2\langle X(t), A X(t)\rangle=0
$$

B-4. Find and classify the critical points of $g(x, y):=x^{2}-2 x y+\frac{1}{3} y^{3}-3 y$.
Solution: At a critical point: $0=g_{x}=2 x-2 y$ and $0=g_{y}=-2 x+y^{2}-3$. The first equation gives $x=y$. Using this in the second equation we find $0=y^{2}-2 y-3=(y-3)(y+1)$. Consequently there are two critical points: $(3,3)$ and $(-1,-1)$.

To classify these we compute the second derivative (Hessian) matrix

$$
g^{\prime \prime}(x, y)=\left(\begin{array}{rr}
2 & -2 \\
-2 & 2 y
\end{array}\right)
$$

This gives

$$
g^{\prime \prime}(3,3)=\left(\begin{array}{rr}
2 & -2 \\
-2 & 6
\end{array}\right) \quad \text { and } \quad g^{\prime \prime}(-1,-1)=\left(\begin{array}{rr}
2 & -2 \\
-2 & -2
\end{array}\right) .
$$

The first matrix is positive definite so $(3,3)$ is a local minimum. The second is indefinite (and non-degenerate) so $(-1,-1)$ is a saddle point.

B-5. Compute $\oint_{\gamma} 2 x d y-y d x$ where the closed curve γ is the triangle in \mathbb{R}^{2} with vertices at $(0,0),(1,0)$, and $(1,2)$, traversed counterclockwise.

Solution: The simplest approach is to use Stokes' Theorem, letting Ω be the interior of the triangle. This gives

$$
\oint_{\gamma} 2 x d y-y d x=\iint_{\Omega}(2+1) d A=3 \operatorname{Area}(\Omega)=3 .
$$

B-6. Let $\mathbf{V}=\left(y^{2}+x\right) \mathbf{i}+(2 x y-3) \mathbf{j}$.
a) Find a function $u(x, y)$ so that $\mathbf{V}=\nabla u$.

Solution: We want $u_{x}=y^{2}+x$ and $u_{y}=2 x y-3$. Integrating the first of these with respect to x we obtain $u(x, y)=x y^{2}+\frac{1}{2} x^{2}+h(y)$. Substituting this into the second equation we find $2 x y+h^{\prime}(y)=2 x y-3$. Thus $h^{\prime}(y)=-3$ so $h(y)=-3 y+C$, where C is any constant. Consequently

$$
u(x, y)=x y^{2}+\frac{1}{2} x^{2}-3 y+C
$$

It is straightforward to check that this works. [In finding potential functions one almost always ignores the constant $C]$.
b) Let γ be the triangle bounded by the x-axis, the y-axis, and the straight line $2 x+y=2$, traversed counterclockwise. Compute $\oint_{\gamma} \mathbf{V} \cdot d \mathbf{s}$.
Solution: First note that if $\gamma(t), a \leq t \leq b$ is any smooth curve, not necessarily closed, then

$$
\int_{\gamma} \nabla u \cdot d \mathbf{s}=u(\gamma(b))-u(\gamma(a)) .
$$

In the special case of a closed curve, $\gamma(b)=\gamma(a)$ so the integral is zero.
This is also an immediate consequence of Stokes' Theorem.

B-7. Consider the region $\Omega \subset \mathbb{R}^{3}$ above the surface $z=x^{2}+y^{2}$ and below the plane $z=4$.
Compute $J:=\iiint_{\Omega} 2 z d V$.
Solution: There are many ways to do this. We use cylindrical coordinates. The paraboloid $z=x^{2}+y^{2}$ intersects the plane $z=4$ in the circle $x^{2}+y^{2}=4$, that is, $r=2$. Thus

$$
J=\int_{0}^{2 \pi}\left[\int_{0}^{2}\left(\int_{r^{2}}^{4} 2 z d z\right) r d r\right] d \theta .
$$

Now

$$
\int_{r^{2}}^{4} 2 z d z=\left.z^{2}\right|_{r^{2}} ^{4}=16-r^{4} .
$$

Then

$$
\int_{0}^{2}\left(16-r^{4}\right) r d r=8 r^{2}-\left.\frac{r^{6}}{6}\right|_{0} ^{2}=32-\frac{32}{3}=\frac{64}{3} .
$$

Finally

$$
J=\frac{64}{3} \int_{0}^{2 \pi} d \theta=\frac{128 \pi}{3}
$$

B-8. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded open set with smooth boundary $\partial \Omega$ and let $w(x, y, t)$ be the solution of the heat equation

$$
w_{t}=\Delta w \quad \text { for all }(x, y) \in \Omega \quad \text { and } t \geq 0, \quad \text { with } w=0 \quad \text { for }(x, y) \text { on } \partial \Omega .
$$

a) Define $E(t):=\frac{1}{2} \iint_{\Omega} w^{2}(x, y, t) d x d y$. Show that $d E / d t \leq 0$.

Solution: Using the heat equation and Green's first identity

$$
\begin{aligned}
\frac{d E}{d t} & =\iint_{\Omega} u(x, y, t) u_{t}(x, y, t) d A \\
& =\iint_{\Omega} u \Delta u d A \\
& =\int_{\partial \Omega} u \frac{\partial u}{\partial n} d s-\iint_{\Omega}|\nabla u|^{2} d A .
\end{aligned}
$$

Since $u=0$ on $\partial \Omega$, the first integral on the last line is zero. Because the second term is not positive we conclude that $d E / d t \leq 0$.
b) If in addition the initial temperature $w(x, y, 0)=0$, show that $w(x, y, t)=0$ for all $(x, y) \in \Omega$ and $t \geq 0$.
Solution: From its definition, $E(t) \geq 0$. Because $w(x, y, 0)=0$ we see that $E(0)=0$. But $d E / d t \leq 0$ so $E(t)=0$ for all $t \geq 0$. In turn this implies that $w(x, y, t)=0$ for all $t \geq 0$ since otherwise $E(t)$ would be positive for some $t \geq 0$.
c) If $u(x, y, t)$ and $v(x, y, t)$ both satisfy the heat equation in Ω with $u(x, y, t)=v(x, y, t)$ on $\partial \Omega$ for all $t \geq 0$ and also $u(x, y, 0)=v(x, y, 0)$, show that $u(x, y, t)=v(x, y, t)$ for all $(x, y) \in \Omega$ and $t \geq 0$.
Solution: Let $w(x, y, t):=u(x, y, t)-v(x, y, t)$ and apply the result of part b).

