Problem Set 1

Due: In class Thursday, Jan. 19. Late papers will be accepted until 1:00 PM Friday.
These problems are intended to be straightforward with not much computation.

1. At noon the minute and hour hands of a clock coincide.
a) What in the first time, T_{1}, when they are perpendicular?
b) What is the next time, T_{2}, when they again coincide?
2. Which of the following sets are linear spaces?
a) $\left\{X=\left(x_{1}, x_{2}, x_{3}\right)\right.$ in \mathbb{R}^{3} with the property $\left.x_{1}-2 x_{3}=0\right\}$
b) The set of solutions x of $A x=0$, where A is an $m \times n$ matrix.
c) The set of 2×2 matrices A with $\operatorname{det}(A)=0$.
d) The set of polynomials $p(x)$ with $\int_{-1}^{1} p(x) d x=0$.
e) The set of solutions $y=y(t)$ of $y^{\prime \prime}+4 y^{\prime}+y=0$. [Note: You are not being asked to solve this differential equation. You are only being asked a more primitive question.]
3. Consider the system of equations

$$
\begin{aligned}
x+y-z & =a \\
x-y+2 z & =b \\
3 x+y & =c
\end{aligned}
$$

a) Find the general solution of the homogeneous equation.
b) If $a=1, b=2$, and $c=4$, then a particular solution of the inhomogeneous equations is $x=1, y=1, z=1$. Find the most general solution of these inhomogeneous equations.
c) If $a=1, b=2$, and $c=3$, show these equations have no solution.
d) If $a=0, b=0, c=1$, show the equations have no solution. [Note: $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=$ $\left.\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)-\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right]$.
e) Let $A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & -1 & 2 \\ 3 & 1 & 0\end{array}\right)$. Compute $\operatorname{det} A$.
[Remark: After you have done parts a), and c), it is possible immediately to write the solutions to the remaining parts with no additional computation.]
4. a) Find a real 2×2 matrix A (other than $A=I$) such that $A^{2}=I$.
b) Find a real 2×2 matrix A (other than $A=I$) such that $A^{3}=I$.
5. a) Find a 2×2 matrix that rotates the plane by +45 degrees (+45 degrees means 45 degrees counterclockwise).
b) Find a 2×2 matrix that rotates the plane by +45 degrees followed by a reflection across the horizontal axis.
c) Find a 2×2 matrix that reflects across the horizontal axis followed by a rotation the plane by +45 degrees.
d) Find a matrix that rotates the plane through +60 degrees, keeping the origin fixed.
e) Find the inverse of each of these maps.
6. a) Find a 3×3 matrix that acts on \mathbb{R}^{3} as follows: it keeps the x_{1} axis fixed but rotates the $x_{2} x_{3}$ plane by 60 degrees.
b) Find a 3×3 matrix A mapping $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that rotates the $x_{1} x_{3}$ plane by 60 degrees and leaves the x_{2} axis fixed.
7. Find an example of a 2×2 matrix with the property that $A^{2}=0$ but $A \neq 0$.
8. Proof or counterexample. In these L is a linear map from \mathbb{R}^{2} to \mathbb{R}^{2}, so its representation will be as a 2×2 matrix.
a) If L is invertible, then L^{-1} is also invertible.
b) If $L V=5 V$ for all vectors V, then $L^{-1} W=(1 / 5) W$ for all vectors W.
c) If L is a rotation of the plane by 45 degrees counterclockwise, then L^{-1} is a rotation by 45 degrees clockwise.
d) If L is a rotation of the plane by 45 degrees counterclockwise, then L^{-1} is a rotation by 315 degrees counterclockwise.
e) The zero $\operatorname{map}(0 \mathbf{V}:=0$ for all vectors $\mathbf{V})$ is invertible.
f) The identity map ($I \mathbf{V}:=\mathbf{V}$ for all vectors \mathbf{V}) is invertible.
g) If L is invertible, then $L^{-1} 0=0$.
h) If $L \mathbf{V}=0$ for some non-zero vector \mathbf{V}, then L is not invertible.
i) The identity map (say from the plane to the plane) is the only linear map that is its own inverse: $L=L^{-1}$.
9. Let L, M, and P be linear maps from the (two dimensional) plane to the plane:
L is rotation by 90 degrees counterclockwise.
M is reflection across the vertical axis
$N v:=-v$ for any vector $v \in \mathbb{R}^{2}$ (reflection across the origin)
a) Find matrices representing each of the linear maps L, M, and N.
b) Draw pictures describing the actions of the maps L, M, and N and the compositions: $L M, M L, L N, N L, M N$, and $N M$.
c) Which pairs of these maps commute?
d) Which of the following identities are correct - and why?

1) $L^{2}=N$
2) $\quad N^{2}=I$
3) $\quad L^{4}=I$
4) $L^{5}=L$
5) $M^{2}=I$
6) $\quad M^{3}=M$
7) $\quad M N M=N$
8) $N M N=L$
10. Think of the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ as mapping one plane to another.
a) If two lines in the first plane are parallel, show that after being mapped by A they are also parallel - although they might coincide.
b) Let Q be the unit square: $0<x<1,0<y<1$ and let Q^{\prime} be its image under this map A. Show that the $\operatorname{area}\left(Q^{\prime}\right)=|a d-b c|$. [More generally, the area of any region is magnified by $|a d-b c|$, which is called the determinant of A.]
11. Let A be a matrix, not necessarily square. Say \mathbf{V} and \mathbf{W} are particular solutions of the equations $A \mathbf{V}=\mathbf{Y}_{1}$ and $A \mathbf{W}=\mathbf{Y}_{2}$, respectively, while $\mathbf{Z} \neq 0$ is a solution of the homogeneous equation $A \mathbf{Z}=0$. Answer the following in terms of \mathbf{V}, \mathbf{W}, and \mathbf{Z}.
a) Find some solution of $A \mathbf{X}=3 \mathbf{Y}_{1}$.
b) Find some solution of $A \mathbf{X}=-5 \mathbf{Y}_{2}$.
c) Find some solution of $A \mathbf{X}=3 \mathbf{Y}_{1}-5 \mathbf{Y}_{2}$.
d) Find another solution (other than \mathbf{Z} and 0) of the homogeneous equation $A \mathbf{X}=0$.
e) Find two solutions of $A \mathbf{X}=\mathbf{Y}_{1}$.
f) Find another solution of $A \mathbf{X}=3 \mathbf{Y}_{1}-5 \mathbf{Y}_{2}$.
g) If A is a square matrix, then $\operatorname{det} A=$?
h) If A is a square matrix, for any given vector \mathbf{W} can one always find at least one solution of $A \mathbf{X}=\mathbf{W}$? Why?
[Last revised: January 13, 2012]
