Math 260, Spring 2012

Problem Set 1

DUE: In class Thursday, Jan. 19. Late papers will be accepted until 1:00 PM Friday.

These problems are intended to be straightforward with not much computation.

- 1. At noon the minute and hour hands of a clock coincide.
 - a) What in the first time, T_1 , when they are perpendicular?
 - b) What is the next time, T_2 , when they again coincide?
- 2. Which of the following sets are linear spaces?
 - a) $\{X = (x_1, x_2, x_3) \text{ in } \mathbb{R}^3 \text{ with the property } x_1 2x_3 = 0\}$
 - b) The set of solutions x of Ax = 0, where A is an $m \times n$ matrix.
 - c) The set of 2×2 matrices A with det(A) = 0.
 - d) The set of polynomials p(x) with $\int_{-1}^{1} p(x) dx = 0$.
 - e) The set of solutions y = y(t) of y'' + 4y' + y = 0. [NOTE: You are *not* being asked to solve this differential equation. You are only being asked a more primitive question.]
- 3. Consider the system of equations

$$x + y - z = a$$

$$x - y + 2z = b$$

$$3x + y = c$$

- a) Find the general solution of the homogeneous equation.
- b) If a = 1, b = 2, and c = 4, then a particular solution of the inhomogeneous equations is x = 1, y = 1, z = 1. Find the most general solution of these inhomogeneous equations.
- c) If a = 1, b = 2, and c = 3, show these equations have no solution.
- d) If a = 0, b = 0, c = 1, show the equations have *no* solution. [Note: $\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\2\\4 \end{pmatrix} \begin{pmatrix} 1\\2\\3 \end{pmatrix}$]. e) Let $A = \begin{pmatrix} 1 & 1 & -1\\1 & -1 & 2\\3 & 1 & 0 \end{pmatrix}$. Compute det A.

[Remark: After you have done parts a), and c), it is possible immediately to write the solutions to the remaining parts with no additional computation.]

4. a) Find a real 2×2 matrix A (other than A = I) such that $A^2 = I$.

- b) Find a real 2×2 matrix A (other than A = I) such that $A^3 = I$.
- 5. a) Find a 2×2 matrix that rotates the plane by +45 degrees (+45 degrees means 45 degrees *counterclockwise*).
 - b) Find a 2×2 matrix that rotates the plane by +45 degrees followed by a reflection across the horizontal axis.
 - c) Find a 2×2 matrix that reflects across the horizontal axis followed by a rotation the plane by +45 degrees.
 - d) Find a matrix that rotates the plane through +60 degrees, keeping the origin fixed.
 - e) Find the inverse of each of these maps.
- 6. a) Find a 3×3 matrix that acts on \mathbb{R}^3 as follows: it keeps the x_1 axis fixed but rotates the x_2 x_3 plane by 60 degrees.
 - b) Find a 3×3 matrix A mapping $\mathbb{R}^3 \to \mathbb{R}^3$ that rotates the $x_1 \, x_3$ plane by 60 degrees and leaves the x_2 axis fixed.
- 7. Find an example of a 2×2 matrix with the property that $A^2 = 0$ but $A \neq 0$.
- 8. Proof or counterexample. In these L is a linear map from \mathbb{R}^2 to \mathbb{R}^2 , so its representation will be as a 2×2 matrix.
 - a) If L is invertible, then L^{-1} is also invertible.
 - b) If LV = 5V for all vectors V, then $L^{-1}W = (1/5)W$ for all vectors W.
 - c) If L is a rotation of the plane by 45 degrees *counterclockwise*, then L^{-1} is a rotation by 45 degrees *clockwise*.
 - d) If L is a rotation of the plane by 45 degrees counterclockwise, then L^{-1} is a rotation by 315 degrees counterclockwise.
 - e) The zero map $(0\mathbf{V} := 0$ for all vectors $\mathbf{V})$ is invertible.
 - f) The identity map $(I\mathbf{V} := \mathbf{V} \text{ for all vectors } \mathbf{V})$ is invertible.
 - g) If L is invertible, then $L^{-1}0 = 0$.
 - h) If $L\mathbf{V} = 0$ for some non-zero vector \mathbf{V} , then L is not invertible.
 - i) The identity map (say from the plane to the plane) is the only linear map that is its own inverse: $L = L^{-1}$.
- 9. Let L, M, and P be linear maps from the (two dimensional) plane to the plane:
 - L is rotation by 90 degrees counterclockwise.
 - M is reflection across the vertical axis

Nv := -v for any vector $v \in \mathbb{R}^2$ (reflection across the origin)

- a) Find matrices representing each of the linear maps L, M, and N.
- b) Draw pictures describing the actions of the maps L, M, and N and the compositions: LM, ML, LN, NL, MN, and NM.
- c) Which pairs of these maps commute?
- d) Which of the following identities are correct—and why?
 - 1) $L^2 = N$ 2) $N^2 = I$ 3) $L^4 = I$ 4) $L^5 = L$ 5) $M^2 = I$ 6) $M^3 = M$ 7) MNM = N 8) NMN = L

10. Think of the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ as mapping one plane to another.

- a) If two lines in the first plane are parallel, show that after being mapped by A they are also parallel although they might coincide.
- b) Let Q be the unit square: 0 < x < 1, 0 < y < 1 and let Q' be its image under this map A. Show that the area(Q') = |ad bc|. [More generally, the area of any region is magnified by |ad bc|, which is called the *determinant* of A.]
- 11. Let A be a matrix, not necessarily square. Say V and W are particular solutions of the equations $A\mathbf{V} = \mathbf{Y}_1$ and $A\mathbf{W} = \mathbf{Y}_2$, respectively, while $\mathbf{Z} \neq 0$ is a solution of the homogeneous equation $A\mathbf{Z} = 0$. Answer the following in terms of V, W, and Z.
 - a) Find some solution of $A\mathbf{X} = 3\mathbf{Y}_1$.
 - b) Find some solution of $A\mathbf{X} = -5\mathbf{Y}_2$.
 - c) Find some solution of $A\mathbf{X} = 3\mathbf{Y}_1 5\mathbf{Y}_2$.
 - d) Find another solution (other than \mathbf{Z} and 0) of the homogeneous equation $A\mathbf{X} = 0$.
 - e) Find *two* solutions of $A\mathbf{X} = \mathbf{Y}_1$.
 - f) Find another solution of $A\mathbf{X} = 3\mathbf{Y}_1 5\mathbf{Y}_2$.
 - g) If A is a square matrix, then $\det A = ?$
 - h) If A is a square matrix, for any given vector \mathbf{W} can one always find at least one solution of $A\mathbf{X} = \mathbf{W}$? Why?

[Last revised: January 13, 2012]