Problem Set 10

Due: Thurs. March 29. Late papers will be accepted until 1:00 PM Friday.
Unless otherwise stated use the standard Euclidean norm.

1. [Marsden-Tromba, p. 282 \#6] Sketch the solid whose volume is given by

$$
\int_{0}^{3}\left(\int_{0}^{2}\left(9+x^{2}+y^{2}\right) d x\right) d y
$$

2. [Marsden-Tromba, p. $282 \# 12$] Let $f(x, y)$ be continuous on the rectangle $[a, b] \times[c, d]$. For $a<x<b, c<y<d$ define

$$
G(x, y):=\int_{a}^{x}\left(\int_{c}^{y} f(u, v) d v\right) d u
$$

Show that $\partial^{2} G / \partial x \partial y=\partial^{2} G / \partial y \partial x=f(x, y)$.
3. [Marsden-Tromba, p. $289 \# 9$] Let D be the region bounded by the y axis and the parabola $x=-4 y^{2}+3$. Compute

$$
\iint_{D} x^{3} y d x d y
$$

4. [Marsden-Tromba, p. 293 \#5] Change the order of integration and evaluate $\int_{0}^{1} \int_{\sqrt{y}}^{1} e^{x^{3}} d x d y$.
5. [Marsden-Tromba, p. $304 \# 25]$ Let $W=(x, y, z) \in \mathbb{R}^{3}: \sqrt{x^{2}+y^{2}} \leq z \leq 1$. Write the following triple integral as an iterated integral:

$$
\iiint_{W} f d V=\int_{a}^{b}\left\{\int_{?}^{?}\left(\int_{?}^{?} f(x, y, z) d z\right) d y\right\} d x
$$

6. [Marsden-Tromba, p. $304 \# 30]$ Let W be the region bounded by the planes $x=0$, $y=0, z=0, x+y=1$, and $z=x+y$. Evaluate $\iiint_{W} x d x d y d z$.
7. a) If A is an $n \times n$ matrix and $c \in \mathbb{R}$, show that $\operatorname{det}(c A)=c^{n} \operatorname{det} A$.
b) Let A and B be $n \times n$ matrices. We say that they are similar if there is an invertible matrix S such that $A=S B S^{-1}$. If A and B are similar, show that $\operatorname{det} A=\operatorname{det} B$.
8. Compute the determinant of: $A:=\left(\begin{array}{rrrrr}a & 1 & 0 & 0 & 0 \\ b & 1 & 0 & 0 & 0 \\ c & 0 & 0 & 1 & -b \\ c & 0 & 0 & 1 & -a \\ d & e & 1 & f & g\end{array}\right)$.
9. A square matrix A is upper triangular if all the elements below the main diagonal are zero,

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & \cdot \\
0 & 0 & \ddots & \cdot \\
0 & 0 & \cdots & a_{n n}
\end{array}\right)
$$

If A is upper triangular, show that its determinant is simply the product of the diagonal elements:

$$
\operatorname{det} A=a_{11} a_{22} \ldots a_{n n}
$$

10. [Marsden-Tromba, p. $327 \# 19]$ Calculate $\iint_{\Omega}(x+y)^{2} e^{x-y} d x d y$, where Ω is the region bounded by $x+y=1, x+y=4, x-y=-1$, and $x-y=1$.
11. [Marsden-Tromba, p. $327 \# 21$] Integrate $x^{2}+y^{2}+z^{2} 0$ ver the cylinder $x^{2}+y^{2} \leq 2$, $-2 \leq z \leq 3$.
12. a) Compute $\iint_{\mathbb{R}^{2}} \frac{d x d y}{\left[1+x^{2}+y^{2}\right]^{2}}$.
b) Compute $\iint_{\mathbb{R}^{2}} \frac{d x d y}{\left[1+x^{2}+4 y^{2}\right]^{2}}$.
c) Compute $\iint_{\mathbb{R}^{2}} \frac{d x d y}{\left[1+x^{2}+2 x y+5 y^{2}\right]^{2}}$. Hint: $x^{2}-2 x y+5 y^{2}=(x-y)^{2}+$?.
d) Let A be a positive definite 2×2 symmetric real matrix and $X:=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Show that

$$
\iint_{\mathbb{R}^{2}} \frac{d x_{1} d x_{2}}{[1+\langle X, A X\rangle]^{2}}=\frac{\pi}{\sqrt{\operatorname{det} A}}
$$

13. Compute $\iint_{\mathbb{R}^{2}} e^{-\left(a x^{2}+b y^{2}\right)} d x d y$, where $a>0$ and $b>0$.

Bonus Problem

[Please give this directly to Professor Kazdan]
B-1 a) Let A be a real symmetric positive definite 2×2 matrix. Using the method of Problem 12c-d (completing the square), show that

$$
\iint_{\mathbb{R}^{2}} e^{-\langle X, A X\rangle} d x_{1} d x_{2}=\frac{\pi}{\sqrt{\operatorname{det} A}} .
$$

b) Important Fact: If A is a symmetric matrix, then there is an orthogonal matrix R and a diagonal matrix D so that $A=R D R^{-1}$. In particular, every symmetric matrix is similar to some diagonal matrix.
Use this to show that if A is a positive definite symmetric $n \times n$ matrix, then

$$
\int \cdots \int_{\mathbb{R}^{n}} e^{-\langle X, A X\rangle} d x_{1} \cdots d x_{n}=\frac{\pi^{n / 2}}{\sqrt{\operatorname{det} A}} .
$$

[Last revised: March 26, 2012]

