Problem Set 11

DUE: Thurs. April 5. Late papers will be accepted until 1:00 PM Friday.

- 1. Let $u(x,t) := \frac{1}{2}[f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) \, ds$. Show that u satisfies the wave equation (for a vibrating string) $u_{tt} = c^2 u_{xx}$ with initial position u(x,0) = f(x) and initial velocity $u_t(x,0) = g(x)$. [SUGGESTION: If $G(p,q) := \int_p^q h(s) \, ds$, compute $\partial G(p,q) / \partial p$ and $\partial G(p,q) / \partial q$].
- 2. Let $Q \subset \mathbb{R}^3$ be the portion of the shell $1 \le x^2 + y^2 + z^2 \le 9$ that is in the first octant $x \ge 0, y \ge 0, z \ge 0$.
 - a) Set-up and evaluate the triple integral to compute the volume of Q.
 - b) Compute $\iiint_Q z \, dV$.
- 3. [Marsden-Tromba, p.337 #2] Assuming uniform density, find the coordinates of the center of mass of the semicircle $y = \sqrt{r^2 x^2} \ge 0$.
- 4. [Marsden-Tromba, p.337 #4] Find the average of e^{x+y} over the triangle with vertices at (0,0), (1,0), and (0,1).
- 5. [Marsden-Tromba, p.338 #16] Find the average of e^{-z} over the unit ball $x^2 + y^2 + z^2 \le 1$.
- 6. [Marsden-Tromba, p.338 #24-25]
 - a) Let D be a region in the part of the xy-plane with x > 0. Assume D has uniform density. Let A(D) be its area and (\bar{x}, \bar{y}) its center of mass. Let W be the solid obtained by rotating D about the y-axis. Show that $\operatorname{Vol}(W) = 2\pi \bar{x}A(D)$. [Note that $2\pi \bar{x}$ is the length of the circle traversed by the center of mass.]
 - b) Apply this to compute the volume of the torus obtained by rotating the unit circle centered at (3,0) around the *y*-axis.
- 7. [Marsden-Tromba, P. 373 #3] Let $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Evaluate the line integral of \mathbf{F} along each of the following paths:

a).
$$\mathbf{c}(t) = (t, t, t), \quad 0 \le t \le 1$$

b). $\mathbf{c}(t) = (\cos t, \sin t, 0), \quad 0 \le t \le 2\pi$
c). $\mathbf{c}(t) = (\sin t, 0, \cos t), \quad 0 \le t \le 2\pi$
c). $\mathbf{c}(t) = (\sin t, 0, \cos t), \quad 0 \le t \le 2\pi$
c). $\mathbf{c}(t) = (t^2, 3t, 2t^3), \quad -1 \le t \le 2\pi$

8. Repeat the previous problem with $\mathbf{F}(x, y, z) = y\mathbf{i} - x\mathbf{j} + z\mathbf{k}$.

- 9. [Marsden-Tromba, P.374 #13] Let $\mathbf{c}(t)$ be a path and \mathbf{T} the unit tangent vector. What is $\int_{\mathbf{c}} \mathbf{T} \cdot d\mathbf{s}$?
- 10. Let $\mathbf{r} := x\mathbf{i} + y\mathbf{j}$ and $\mathbf{V}(x, y) := p(x, y)\mathbf{i} + q(x, y)\mathbf{j}$ be (smooth) vector fields and C a smooth curve in the plane. In this problem J is the line integral $J = \int_C \mathbf{V} \cdot d\mathbf{r}$. For each of the following, either give a proof or give a counterexample.
 - a) If C is a vertical line segment and q(x, y) = 0, then J = 0.
 - b) If C is a circle and q(x, y) = 0, then J = 0.
 - c) If C is a circle centered at the origin and p(x,y) = -q(x,y), then J = 0.
 - d) If p(x, y) > 0 and q(x, y) > 0, then J > 0.
- 11. Let $\Omega \subset \mathbb{R}^3$ be the half-ball where $x^2 + y^2 + z^2 \leq 1$ and $z \geq 0$. Use symmetry to deduce (without computation) that $\iint_{\Omega} x^3 dV = 0$.
- 12. If $\mathbf{F} := F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k}$ is a conservative field, then $\mathbf{F} = \nabla u(x, y, z)$ for some scalarvalued function u and u is called the *potential function* for the field \mathbf{F} .
 - a) If **F** is conservative, show that

$$\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}, \qquad \frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x}, \text{ and } \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y}.$$

- b) Show that $\mathbf{F} := 2x\mathbf{i} + z\mathbf{j} + 2y\mathbf{k}$ is *not* conservative.
- c) Show that $\mathbf{F} := 2xy^3\mathbf{i} + 3x^2y^2\mathbf{j}$ is conservative by finding the potential function u(x, z).
- d) Show that $\mathbf{F} := 2xyz\mathbf{i} + x^2z\mathbf{j} + x^2y\mathbf{k}$ is conservative by finding the potential function u.
- 13. [Marsden-Tromba, P.374 #17] Evaluate $\int_C 2xyz \, dx + x^2z \, dy + x^2z \, dz$ where C is an oriented simple curve connecting (1, 1, 1) to (1, 2, 4).
- 14. [Marsden-Tromba, P.374 #18] Suppose $\nabla f(x, y, z) = 2xyze^{x^2}\mathbf{i} + ze^{x^2}\mathbf{j} + ye^{x^2}\mathbf{k}$. If f(0, 0, 0) = 5, find f(1, 1, 2).

Bonus Problems

[Please give this directly to Professor Kazdan]

B-1 Let $V_n(R)$ be the "volume" of the ball $B_n(R) := \{(x_1, \ldots, x_n) \in \mathbb{R}^n | x_1^2 + \cdots x_n^2 \leq R^2\}$ and $A_{n-1}(R)$ the "area" of the sphere S^{n-1} of radius R in \mathbb{R}^n , so $x_1^2 + \cdots x_n^2 = R^2$. Complete the outline begun in class to obtain the recursion formula

$$A_n(1) = \frac{2\pi}{n-1} A_{n-2}(1)$$

and use this to find formulas for $V_n(R)$ and $A_{n-1}(R)$. There are two cases depending if n is even or odd.

Show that $\lim_{n\to\infty} V_n(1) = 0$.

B-2 Let $\Omega \subset \mathbb{R}^2$ be a connected open set. If u(x, y) is a smooth scalar-valued function with the property that $\nabla u = 0$ throughout Ω , show that u(x, y) must be a constant.

[Last revised: April 1, 2012]