Problem Set 11

Due: Thurs. April 5. Late papers will be accepted until 1:00 PM Friday.

1. Let $u(x, t):=\frac{1}{2}[f(x+c t)+f(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s$. Show that u satisfies the wave equation (for a vibrating string) $u_{t t}=c^{2} u_{x x}$ with initial position $u(x, 0)=f(x)$ and initial velocity $u_{t}(x, 0)=g(x)$.
[SUGGESTION: If $G(p, q):=\int_{p}^{q} h(s) d s$, compute $\partial G(p, q) / \partial p$ and $\partial G(p, q) / \partial q$].
2. Let $Q \subset \mathbb{R}^{3}$ be the portion of the shell $1 \leq x^{2}+y^{2}+z^{2} \leq 9$ that is in the first octant $x \geq 0, y \geq 0, z \geq 0$.
a) Set-up and evaluate the triple integral to compute the volume of Q.
b) Compute $\iiint_{Q} z d V$.
3. [Marsden-Tromba, p. 337 \#2] Assuming uniform density, find the coordinates of the center of mass of the semicircle $y=\sqrt{r^{2}-x^{2}} \geq 0$.
4. [Marsden-Tromba, p. 337 \#4] Find the average of e^{x+y} over the triangle with vertices at $(0,0),(1,0)$, and $(0,1)$.
5. [Marsden-Tromba, p. 338 \#16] Find the average of e^{-z} over the unit ball $x^{2}+y^{2}+z^{2} \leq 1$.
6. [Marsden-Tromba, p. 338 \#24-25]
a) Let D be a region in the part of the $x y$-plane with $x>0$. Assume D has uniform density. Let $A(D)$ be its area and (\bar{x}, \bar{y}) its center of mass. Let W be the solid obtained by rotating D about the y-axis. Show that $\operatorname{Vol}(W)=2 \pi \bar{x} A(D)$. [Note that $2 \pi \bar{x}$ is the length of the circle traversed by the center of mass.]
b) Apply this to compute the volume of the torus obtained by rotating the unit circle centered at $(3,0)$ around the y-axis.
7. [Marsden-Tromba, P. $373 \# 3$] Let $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. Evaluate the line integral of \mathbf{F} along each of the following paths:
a). $\mathbf{c}(t)=(t, t, t), \quad 0 \leq t \leq 1$
c). $\mathbf{c}(t)=(\sin t, 0, \cos t), \quad 0 \leq t \leq 2 \pi$
b). $\mathbf{c}(t)=(\cos t, \sin t, 0), \quad 0 \leq t \leq 2 \pi$
d). $\mathbf{c}(t)=\left(t^{2}, 3 t, 2 t^{3}\right), \quad-1 \leq t \leq 2$
8. Repeat the previous problem with $\mathbf{F}(x, y, z)=y \mathbf{i}-x \mathbf{j}+z \mathbf{k}$.
9. [Marsden-Tromba, P. $374 \# 13$] Let $\mathbf{c}(t)$ be a path and \mathbf{T} the unit tangent vector. What is $\int_{\mathbf{c}} \mathbf{T} \cdot d \mathbf{s}$?
10. Let $\mathbf{r}:=x \mathbf{i}+y \mathbf{j}$ and $\mathbf{V}(x, y):=p(x, y) \mathbf{i}+q(x, y) \mathbf{j}$ be (smooth) vector fields and C a smooth curve in the plane. In this problem J is the line integral $J=\int_{C} \mathbf{V} \cdot d \mathbf{r}$. For each of the following, either give a proof or give a counterexample.
a) If C is a vertical line segment and $q(x, y)=0$, then $J=0$.
b) If C is a circle and $q(x, y)=0$, then $J=0$.
c) If C is a circle centered at the origin and $p(x, y)=-q(x, y)$, then $J=0$.
d) If $p(x, y)>0$ and $q(x, y)>0$, then $J>0$.
11. Let $\Omega \subset \mathbb{R}^{3}$ be the half-ball where $x^{2}+y^{2}+z^{2} \leq 1$ and $z \geq 0$. Use symmetry to deduce (without compuation) that $\iiint_{\Omega} x^{3} d V=0$.
12. If $\mathbf{F}:=F_{1} \mathbf{i}+F_{2} \mathbf{j}+F_{3} \mathbf{k}$ is a conservative field, then $\mathbf{F}=\nabla u(x, y, z)$ for some scalarvalued function u and u is called the potential function for the field \mathbf{F}.
a) If \mathbf{F} is conservative, show that

$$
\frac{\partial F_{1}}{\partial y}=\frac{\partial F_{2}}{\partial x}, \quad \frac{\partial F_{1}}{\partial z}=\frac{\partial F_{3}}{\partial x}, \quad \text { and } \quad \frac{\partial F_{2}}{\partial z}=\frac{\partial F_{3}}{\partial y} .
$$

b) Show that $\mathbf{F}:=2 x \mathbf{i}+z \mathbf{j}+2 y \mathbf{k}$ is not conservative.
c) Show that $\mathbf{F}:=2 x y^{3} \mathbf{i}+3 x^{2} y^{2} \mathbf{j}$ is conservative by finding the potential function $u(x, z)$.
d) Show that $\mathbf{F}:=2 x y z \mathbf{i}+x^{2} z \mathbf{j}+x^{2} y \mathbf{k}$ is conservative by finding the potential function u.
13. [Marsden-Tromba, P. $374 \# 17$] Evaluate $\int_{C} 2 x y z d x+x^{2} z d y+x^{2} z d z$ where C is an oriented simple curve connecting $(1,1,1)$ to $(1,2,4)$.
14. [Marsden-Tromba, P. $374 \# 18$] Suppose $\nabla f(x, y, z)=2 x y z e^{x^{2}} \mathbf{i}+z e^{x^{2}} \mathbf{j}+y e^{x^{2}} \mathbf{k}$. If $f(0,0,0)=5$, find $f(1,1,2)$.

Bonus Problems

[Please give this directly to Professor Kazdan]
B-1 Let $V_{n}(R)$ be the "volume" of the ball $B_{n}(R):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}^{2}+\cdots x_{n}^{2} \leq R^{2}\right\}$ and $A_{n-1}(R)$ the "area" of the sphere S^{n-1} of radius R in \mathbb{R}^{n}, so $x_{1}^{2}+\cdots x_{n}^{2}=R^{2}$. Complete the outline begun in class to obtain the recursion formula

$$
A_{n}(1)=\frac{2 \pi}{n-1} A_{n-2}(1)
$$

and use this to find formulas for $V_{n}(R)$ and $A_{n-1}(R)$. There are two cases depending if n is even or odd.
Show that $\lim _{n \rightarrow \infty} V_{n}(1)=0$.

B-2 Let $\Omega \subset \mathbb{R}^{2}$ be a connected open set. If $u(x, y)$ is a smooth scalar-valued function with the property that $\nabla u=0$ throughout Ω, show that $u(x, y)$ must be a constant.
[Last revised: April 1, 2012]

