Problem Set 12

Due: never
Unless otherwise stated use the standard Euclidean norm.

1. Let Let $\gamma(t)$ be any smooth closed curve in \mathbb{R}^{4}. Why, with only a mental computation, is

$$
\oint_{\gamma} 2 x d x+6(x-y) d y=\oint_{\gamma} 6 x d y ?
$$

2. Find some closed curve $\gamma(t)$ so that $\oint_{\gamma} 6 x d y>0$.
3. Let C be the portion of the unit circle $x^{2}+y^{2}=1$ with $x \geq 0$ oriented so that it begins at $(0,1)$ and ends at $(0,-1)$. Evaluate

$$
\int_{\gamma} e^{x} \sin y d x+e^{x} \cos y d y
$$

4. Let \mathbf{F} be a continuous force field defined on \mathbb{R}^{3} and suppose that a particle of mass m moves along a path $X(t)$ determined by Newton's second law of motion, $m X^{\prime \prime}=$ $\mathbf{F}(X(t))$ during the time interval $a \leq t \leq b$. Show that

$$
\int_{a}^{b} \mathbf{F} \cdot X^{\prime}(t) d t=\frac{m}{2}\left\|X^{\prime}(b)\right\|^{2}-\frac{m}{2}\left\|X^{\prime}(a)\right\|^{2}
$$

In physics, the right hand side is interpreted as a change in kinetic energy.
5. Let $\psi(t)$ be a scalar-valued function with a continuous derivative for $0<t<\infty$ and let $\mathbf{X}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} \in \mathbb{R}^{3}$. Define the vector field $\mathbf{F}(x, y, z):=\psi(\|\mathbf{X}\|) \mathbf{X}$ for all $\mathbf{X} \neq 0$. Show that this vector field is conservative by finding a scalar-valued function $\varphi(r)$ with the property that $\mathbf{F}(\mathbf{X}):=\nabla \varphi(\|\mathbf{X}\|)$. In particular, this shows that every central force field is conservative except possibly at the origin.
6. [Marsden-Tromba p. $381 \# 2$] A surface in \mathbb{R}^{3} is defined by $x=u^{2}-v^{2}, y=u+v$, $z=u^{2}+4 v$.
a) At what points is this surface regular?
b) Find the equation of the tangent plane at $\left(\frac{-1}{4}, \frac{1}{2}, 2\right)$ (so $u=0, v=\frac{1}{2}$).
7. [Marsden-Tromba p. 381 \#7] Match the parametrization as belonging to the surfaces: (i) ellipsoid, (ii) parabolic cylinder, (iii) hyperboloid, or (iv) cone [Corresponding drawings are in the text].
a) $\Phi(u, v):=\left(\left(2 \sqrt{1+u^{2}}\right) \cos v,\left(2 \sqrt{1+u^{2}}\right) \sin v, u\right)$
b) $\Phi(u, v):=(3 \cos u \sin v, 2 \sin u \sin v, \cos v)$
c) $\Phi(u, v):=\left(u, v, u^{2}\right)$
d) $\Phi(u, v):=(u \cos v, u \sin v, u)$
8. [Marsden-Tromba p. 383 \#18] For a sphere in \mathbb{R}^{3} centered at the origin with radius 2 , find the equation of the tangent plane at the point $(1,1,1 / \sqrt{2})$ by considering the sphere as
a) a surface parametrized by $\Phi(\theta, \phi):=(2 \cos \theta \sin \phi, 2 \sin \theta \sin \phi, 2 \cos \phi)$,
b) a level surface of $f(x, y, z):=x^{2}+y^{2}+z^{2}$,
c) the graph of $g(x, y):=\sqrt{4-x^{2}-y^{2}}$.
9. We used the following parametrization of the torus:

$$
x(\theta, \phi)=(3+\cos \phi) \cos \theta, \quad y(\theta, \phi):=(3+\cos \phi) \sin \theta, \quad z(\theta, \phi):=\sin \phi,
$$

where $0 \leq \theta, \phi \leq 2 \pi$. Show that the image surface (our torus) is regular at all points.
10. Compute the area of the torus using the parametrization of the above problem.
11. [Marsden-Tromba p. $392 \# 26 \mathrm{~d}$] Consider the graph of $z:=y^{3} \cos ^{2} x$ over the triangle with vertices at $(-1,1),(0,2),(1,1)$. Express the surface area as a double integral (but don't evaluate it).
12. [Marsden-Tromba p. 398 \#4] Evaluate the integral $\iint_{S}(x+z) d S$, where S is the part of the cylinder $y^{2}+z^{2}=4$ with $0 \leq x \leq 5$.
13. [Similar to Marsden-Tromba p. $399 \# 23$] Let S be a two dimensional surface in \mathbb{R}^{n}, $n \geq 3$, given by the parametrization $(u, v) \mapsto \Phi(u, v)$ with

$$
x_{1}=x_{1}(u, v), \quad x_{2}=x_{2}(u, v), \quad \ldots \quad x_{n}=x_{n}(u, v)
$$

Say we have a curve $\gamma(t)=(u(t), v(t)$. Then its image under Φ gives a curve $X(t):=$ $\Phi(u(t), v(t))$ in the surface in \mathbb{R}^{n}. As usual, the element of arc length is given by $d s=\left\|\gamma^{\prime}(t)\right\| d t$. Show that

$$
\begin{equation*}
\left(\frac{d s}{d t}\right)^{2}=E(u, v)\left(\frac{d u}{d t}\right)^{2}+2 F(u, v) \frac{d u}{d t} \frac{d v}{d t}+G(u, v)\left(\frac{d v}{d t}\right)^{2}, \tag{1}
\end{equation*}
$$

where

$$
E(u, v)=\left\|\frac{\partial \Phi}{\partial u}\right\|^{2}, \quad F(u, v)=\frac{\partial \Phi}{\partial u} \cdot \frac{\partial \Phi}{\partial v}, \quad G(u, v)=\left\|\frac{\partial \Phi}{\partial v}\right\|^{2} .
$$

We think of the formula (1) as defining an inner product on tangent vectors and use the symmetric matrix

$$
g:=\left(\begin{array}{ll}
E(u, v) & F(u, v) \\
F(u, v) & G(u, v)
\end{array}\right) .
$$

Since the element of arc length is always positive on non-trivial curves, this matrix g is required to be positive definite. The element of area on the surface is $d S:=$ $\sqrt{\operatorname{det} g} d u d v=\sqrt{E G-F^{2}} d u d v$. Note that this works in any dimension (the cross product version works only in dimension $n=3$).
We often write equation (11) as

$$
d s^{2}=E(u, v) d u^{2}+2 F(u, v) d u d v+G(u, v) d v^{2}
$$

and refer to it as specifying a Riemannian Metric on the surface.
[Last revised: April 11, 2012]

