
Math 260, Spring 2012 Jerry L. Kazdan

Problem Set 13

Due: Thursday April 26, 1 PM

Unless otherwise stated use the standard Euclidean norm. Also all regions 
 � R
n are

assumed to be bounded, connected, and have smooth boundaries..

Remark: The �rst two problems were originally on Exam 3, but at the last moment I
deleted them fearing the exam was too long.

1. Let V = (y2 + 1)i+ (2xy � 4y)j+ 2k

a) Find a function u(x; y; z) so that V = ru .

b) Let 
 be the triangle bounded by the x-axis, the y -axis, and the straight line

2x+ y = 2, traversed counterclockwise. Compute

I


V � ds .

2. a) Let 
 � R
3 be the region below the surface z = 4 � (x2 + y2) and above the

xy -plane. Compute

ZZZ


z dV .

b) Let 
 � R
3 be the region below the surface z = 4 � (x2 + 4y2) and above the

xy -plane. Compute

ZZZ


z dV .

3. Compute

I


x dy � y dx where the closed curve 
 is the triangle in R2 with vertices

at (0; 0), (1; 0), and (1; 2), traversed counterclockwise

4. [Marsden-Tromba, p. 437 # 6] Verify the Green's-Stokes' theorem in the plane
H
@D P dx+

Qdy =
RR

D ::: for the region [0; �
2 ] , [0;

�
2 ] , with P (x; y) = sinx , Q(x; y) = cos y . You

should compute both sides of the formula to verify that they agree.

5. [Marsden-Tromba p. 437 # 11d]. Verify the Green's-Stokes' theorem in the plane or the
disk D with center at the origin and radius R for P (x; y) = 2y , Q(x; y) = x .

6. [Marsden-Tromba p. 437 # 15]. Evaluate

Z
C
(2x3 � y3) dx + (x3 + y3) dy where C is

the unit circle both directly and using the Green's-Stokes' theorem in the plane.

7. [Marsden-Tromba p. 438 # 20]. Let P (x; y) = �y=(x2+ y2) and Q(x; y) = x=(x2+ y2)
in the unit disc D . Show that Green's theorem fails for this P and Q . Explain why.
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8. [Marsden-Tromba p. 439 # 38]. Use Green's theorem in the plane to prove the change
of variables formuls in the following special case

ZZ
D
dx dy =

ZZ
D�

����@(x; y)@(u; v)

���� du dv
for a transformation (u; v) 7! (x(u; v); y(u; v)).

9. In applying the divergence theorem where the region is all of R3 , the integral over the
boundary is not well de�ned. Instead, one works on the ball of radius R and then lets
R!1 .

Suppose V (x; y; z) is a vector-valued function de�ned everywhere in 3-dimensional
space. Further, suppose that V is di�erentiable and that for some constant c

kV (x; y; z)k �
c

1 + (x2 + y2 + z2)3=2

for all (x; y; z). Show that

ZZZ
R3

r � V (x; y; z) dx dy dz = 0: (1)

In other words, if B(0; R) is the ball of radius R centered at the origin, then (1) means
that

lim
R!1

ZZZ
B(0;R)

r � V (x; y; z) dx dy dz = 0:

10. a) Say u(x) satis�es u00�c(x)u = 0 on the boubded interval a < x < b with u(x) = 0
on the boundary, so u(a) = 0 and u(b) = 0. Assuming that c(x) � 0, show
that then the only possibility is u(x) = 0 throughout the interval. [Suggestion:
Multiply the equation by u and integrate over the interval. Then integrate by
parts.] The example u00 + u = 0 on 0 < x < � , one of whose solutions is sinx
shows that the assumption c(x) � 0 plays a vital role.

b) Say u(x; y) satis�es �u � c(x; y)u = 0 in a bounded region 
 in the plane with
u(x; y) = 0 on the boundary, @
. Assuming that c(x; y) � 0, show that then the
only possibility is u(x; y) = 0 throughout 
.

c) Let u(x; y) and v(x; y) satisfy �u� c(x; y)u = f(x; y) in 
 with u(x; y) = �(x; y)
on @
, as well as �v � c(x; y)v = f(x; y) in 
 with v(x; y) = �(x; y) on @
, so
they satisfy the same di�erential equation and the same boundary condition. As
above, assume c(x; y) � 0. Show that u = v throughout 
.

11. a) [Vibrating String] Let u(x; t) be a solution of the wave equation utt = uxx
in one space variable, say 0 � x � L . Assume the ends of the string are �xed:
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u(0; t) = 0 and u(L; t) = 0. De�ne the energy as

E(t) :=
1

2

Z L

0

�
u2t + u2x

�
dx:

Show that energy is conserved : dE=dt = 0. [Hint: At some step of the computa-
tion integrate by parts using that because of the boundary condition, the velocity
is zero at the end points.]

b) Use this to show that if the initial position and initial velocity are zero, so u(x; y; 0) =
0, ut(x; y; 0) = 0, Then (x; y; t) = 0 for all (x; y) 2 
 and all t � 0.

c) [Vibrating Drumhead] Let u(x; y; t) be a solution of the wave equation utt =
uxx + uyy for (x; y) in a bounded set 
 in R

2 (the drumhead). Assume the
drumhead is �xed along its boundary: u(x; y; t) = 0 for (x; y) 2 @
. De�ne the
energy as

E(t) :=
1

2

ZZ



�
u2t + jruj

2
�
dx dy:

Show that energy is conserved : dE=dt = 0.

Bonus Problem

[Please give these directly to Professor Kazdan]

Notation: Let u(x; y) be a smooth function on the plane (actually, we will only use
that the second derivatives are continuous) and D � R2 be an open region. Given a point
p 2 D , let Br(p) be the closed disk of radius r centered at p and contained in D for
0 < r � R (so just pick R su�ciently small). De�ne I(r) by

I(r) :=
1

2�r

Z
@Br(p)

u ds:

This is just the average of u on this circle.

B-1 [Marsden-Tromba p. 438{9 # 29-34]

a) Show that limr!0 I(r) = u(p).

b) Let n denote the unit outer normal to @Br and de�ne @u=@n := ru � n (this is
the directional derivative of u in the direction of the outer normal). Show that

Z
@Br

@u

@n
ds =

ZZ
Br

�u dA:

c) Use this to show that I 0(r) =
1

2�r

ZZ
Br

�u dA .
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d) Suppose that u is a harmonic function, that is, �u = 0 in D . Use the above to
deduce the mean value property of harmonic functions

u(p) =
1

2�r

Z
@Br

u ds:

This states the the value of u at the center of a disk is the average of its values on
the circumference.

e) From the previous part, deduce the \solid mean value property"

u(p) =
1

�R2

ZZ
BR

u dA:

f) If u is harmonic in D and has a local maximum at some point p in D , show that
u must be a constant in some small disk centered at p .

g) Assuming that D is connected, show that if u is harmonic in D and has its absolute
maximum at some point p in D (so u(p) � u(q) for all points q 2 D ), then u
must be a constant D .

Similarly, if u has its absolute minimum at some point p in D , then u must be a
constant in D .

[Last revised: May 10, 2012]

4


