Problem Set 13

Due: Thursday April 26, 1 PM

Unless otherwise stated use the standard Euclidean norm. Also all regions $\Omega \subset \mathbb{R}^{n}$ are assumed to be bounded, connected, and have smooth boundaries..
Remark: The first two problems were originally on Exam 3, but at the last moment I deleted them fearing the exam was too long.

1. Let $\mathbf{V}=\left(y^{2}+1\right) \mathbf{i}+(2 x y-4 y) \mathbf{j}+2 \mathbf{k}$
a) Find a function $u(x, y, z)$ so that $\mathbf{V}=\nabla u$.
b) Let γ be the triangle bounded by the x-axis, the y-axis, and the straight line $2 x+y=2$, traversed counterclockwise. Compute $\oint_{\gamma} \mathbf{V} \cdot d \mathbf{s}$.
2. a) Let $\Omega \subset \mathbb{R}^{3}$ be the region below the surface $z=4-\left(x^{2}+y^{2}\right)$ and above the $x y$-plane. Compute $\iiint_{\Omega} z d V$.
b) Let $\Omega \subset \mathbb{R}^{3}$ be the region below the surface $z=4-\left(x^{2}+4 y^{2}\right)$ and above the $x y$-plane. Compute $\iiint_{\Omega} z d V$.
3. Compute $\oint_{\gamma} x d y-y d x$ where the closed curve γ is the triangle in \mathbb{R}^{2} with vertices at $(0,0),(1,0)$, and $(1,2)$, traversed counterclockwise
4. [Marsden-Tromba, p. $437 \# 6]$ Verify the Green's-Stokes' theorem in the plane $\oint_{\partial D} P d x+$ $Q d y=\iint_{D} \ldots$ for the region $\left[0, \frac{\pi}{2}\right],\left[0, \frac{\pi}{2}\right]$, with $P(x, y)=\sin x, Q(x, y)=\cos y$. You should compute both sides of the formula to verify that they agree.
5. [Marsden-Tromba p. 437 \# 11d]. Verify the Green's-Stokes' theorem in the plane or the disk D with center at the origin and radius R for $P(x, y)=2 y, Q(x, y)=x$.
6. [Marsden-Tromba p. 437 \# 15]. Evaluate $\int_{C}\left(2 x^{3}-y^{3}\right) d x+\left(x^{3}+y^{3}\right) d y$ where C is the unit circle both directly and using the Green's-Stokes' theorem in the plane.
7. [Marsden-Tromba p. $438 \# 20]$. Let $P(x, y)=-y /\left(x^{2}+y^{2}\right)$ and $Q(x, y)=x /\left(x^{2}+y^{2}\right)$ in the unit disc D. Show that Green's theorem fails for this P and Q. Explain why.
8. [Marsden-Tromba p. 439 \# 38]. Use Green's theorem in the plane to prove the change of variables formuls in the following special case

$$
\iint_{D} d x d y=\iint_{D^{*}}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

for a transformation $(u, v) \mapsto(x(u, v), y(u, v))$.
9. In applying the divergence theorem where the region is all of \mathbb{R}^{3}, the integral over the boundary is not well defined. Instead, one works on the ball of radius R and then lets $R \rightarrow \infty$.
Suppose $V(x, y, z)$ is a vector-valued function defined everywhere in 3-dimensional space. Further, suppose that V is differentiable and that for some constant c

$$
\|V(x, y, z)\| \leq \frac{c}{1+\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

for all (x, y, z). Show that

$$
\begin{equation*}
\iiint_{\mathbb{R}^{3}} \nabla \cdot V(x, y, z) d x d y d z=0 \tag{1}
\end{equation*}
$$

In other words, if $B(0, R)$ is the ball of radius R centered at the origin, then (11) means that

$$
\lim _{R \rightarrow \infty} \iiint_{B(0, R)} \nabla \cdot V(x, y, z) d x d y d z=0 .
$$

10. a) Say $u(x)$ satisfies $u^{\prime \prime}-c(x) u=0$ on the boubded interval $a<x<b$ with $u(x)=0$ on the boundary, so $u(a)=0$ and $u(b)=0$. Assuming that $c(x) \geq 0$, show that then the only possibility is $u(x)=0$ throughout the interval. [SUGGEStION: Multiply the equation by u and integrate over the interval. Then integrate by parts.] The example $u^{\prime \prime}+u=0$ on $0<x<\pi$, one of whose solutions is $\sin x$ shows that the assumption $c(x) \geq 0$ plays a vital role.
b) Say $u(x, y)$ satisfies $\Delta u-c(x, y) u=0$ in a bounded region Ω in the plane with $u(x, y)=0$ on the boundary, $\partial \Omega$. Assuming that $c(x, y) \geq 0$, show that then the only possibility is $u(x, y)=0$ throughout Ω.
c) Let $u(x, y)$ and $v(x, y)$ satisfy $\Delta u-c(x, y) u=f(x, y)$ in Ω with $u(x, y)=\phi(x, y)$ on $\partial \Omega$, as well as $\Delta v-c(x, y) v=f(x, y)$ in Ω with $v(x, y)=\phi(x, y)$ on $\partial \Omega$, so they satisfy the same differential equation and the same boundary condition. As above, assume $c(x, y) \geq 0$. Show that $u=v$ throughout Ω.
11. a) [Vibrating String] Let $u(x, t)$ be a solution of the wave equation $u_{t t}=u_{x x}$ in one space variable, say $0 \leq x \leq L$. Assume the ends of the string are fixed:
$u(0, t)=0$ and $u(L, t)=0$. Define the energy as

$$
E(t):=\frac{1}{2} \int_{0}^{L}\left[u_{t}^{2}+u_{x}^{2}\right] d x
$$

Show that energy is conserved: $d E / d t=0$. [Hint: At some step of the computation integrate by parts using that because of the boundary condition, the velocity is zero at the end points.]
b) Use this to show that if the initial position and initial velocity are zero, so $u(x, y, 0)=$ $0, u_{t}(x, y, 0)=0$, Then $(x, y, t)=0$ for all $(x, y) \in \Omega$ and all $t \geq 0$.
c) [Vibrating Drumhead] Let $u(x, y, t)$ be a solution of the wave equation $u_{t t}=$ $u_{x x}+u_{y y}$ for (x, y) in a bounded set Ω in \mathbb{R}^{2} (the drumhead). Assume the drumhead is fixed along its boundary: $u(x, y, t)=0$ for $(x, y) \in \partial \Omega$. Define the energy as

$$
E(t):=\frac{1}{2} \iint_{\Omega}\left[u_{t}^{2}+|\nabla u|^{2}\right] d x d y
$$

Show that energy is conserved: $d E / d t=0$.

Bonus Problem

[Please give these directly to Professor Kazdan]

Notation: Let $u(x, y)$ be a smooth function on the plane (actually, we will only use that the second derivatives are continuous) and $D \subset \mathbb{R}^{2}$ be an open region. Given a point $p \in D$, let $B_{r}(p)$ be the closed disk of radius r centered at p and contained in D for $0<r \leq R$ (so just pick R sufficiently small). Define $I(r)$ by

$$
I(r):=\frac{1}{2 \pi r} \int_{\partial B_{r}(p)} u d s
$$

This is just the average of u on this circle.
B-1 [Marsden-Tromba p. 438-9 \# 29-34]
a) Show that $\lim _{r \rightarrow 0} I(r)=u(p)$.
b) Let \mathbf{n} denote the unit outer normal to ∂B_{r} and define $\partial u / \partial n:=\nabla u \cdot \mathbf{n}$ (this is the directional derivative of u in the direction of the outer normal). Show that

$$
\int_{\partial B_{r}} \frac{\partial u}{\partial n} d s=\iint_{B_{r}} \Delta u d A
$$

c) Use this to show that $I^{\prime}(r)=\frac{1}{2 \pi r} \iint_{B_{r}} \Delta u d A$.
d) Suppose that u is a harmonic function, that is, $\Delta u=0$ in D. Use the above to deduce the mean value property of harmonic functions

$$
u(p)=\frac{1}{2 \pi r} \int_{\partial B_{r}} u d s
$$

This states the the value of u at the center of a disk is the average of its values on the circumference.
e) From the previous part, deduce the "solid mean value property"

$$
u(p)=\frac{1}{\pi R^{2}} \iint_{B_{R}} u d A
$$

f) If u is harmonic in D and has a local maximum at some point p in D, show that u must be a constant in some small disk centered at p.
g) Assuming that D is connected, show that if u is harmonic in D and has its absolute maximum at some point p in D (so $u(p) \geq u(q)$ for all points $q \in D$), then u must be a constant D.
Similarly, if u has its absolute minimum at some point p in D, then u must be a constant in D.
[Last revised: May 10, 2012]

