Math 260, Spring 2012 Jerry L. Kazdan

Problem Set 13
DuEk: Thursday April 26, 1 PM

Unless otherwise stated use the standard Euclidean norm. Also all regions  C R™ are
assumed to be bounded, connected, and have smooth boundaries..

REMARK: The first two problems were originally on Exam 3, but at the last moment I
deleted them fearing the exam was too long.
1. Let V = (32 +1)i+ (2zy — 4y)j + 2k
a) Find a function u(z,y,z) so that V. = Vu.
b) Let v be the triangle bounded by the z-axis, the y-axis, and the straight line

2z 4+ y = 2, traversed counterclockwise. Compute 7{ V -ds.
v

2. a) Let © C R3 be the region below the surface z = 4 — (22 4+ y?) and above the

zy-plane. Compute /// zdV.
0

b) Let Q C R? be the region below the surface z = 4 — (22 + 4y?) and above the

zy-plane. Compute /// zdV.
0

3. Compute j{ zdy — ydx where the closed curve v is the triangle in R? with vertices
¥

at (0,0), (1,0), and (1,2), traversed counterclockwise

4. [Marsden-Tromba, p. 437 # 6] Verify the Green’s-Stokes’ theorem in the plane faD Pdz+
Qdy = [[, ... for the region [0, 5], [0, 5], with P(z,y) =sinz, Q(z,y) = cosy. You
should compute both sides of the formula to verify that they agree.

5. [Marsden-Tromba p. 437 # 11d]. Verify the Green’s-Stokes’ theorem in the plane or the
disk D with center at the origin and radius R for P(z,y) =2y, Q(z,y) = x.

6. [Marsden-Tromba p.437 # 15]. Evaluate /(2(1)3 — 3 dz + (23 + 33) dy where C is

C
the unit circle both directly and using the Green’s-Stokes’ theorem in the plane.

7. [Marsden-Tromba p. 438 # 20]. Let P(z,y) = —y/(2? +%?) and Q(z,y) = z/(2? +4?)
in the unit disc D. Show that Green’s theorem fails for this P and (. Explain why.



8. [Marsden-Tromba p. 439 # 38]. Use Green’s theorem in the plane to prove the change

10.

11.

of variables formuls in the following special case

], =],

for a transformation (u, v) — (z(u,v), y(u,v)).

w,y

)
(w,v) du dv

. In applying the divergence theorem where the region is all of R3, the integral over the

boundary is not well defined. Instead, one works on the ball of radius R and then lets
R — 0.

Suppose V(z,y,z) is a vector-valued function defined everywhere in 3-dimensional
space. Further, suppose that V is differentiable and that for some constant ¢

C
<
I3 + (22 +y? + 22)3/2

1V (z,y,z)
for all (x,y,z). Show that

//RSV-V(m,y,z)dxdydz:O. (1)

In other words, if B(0, R) is the ball of radius R centered at the origin, then means
that

lim /// V- -Vi(z,y,z)dxdydz = 0.

R—o0 B(O,R)

a) Say u(x) satisfies u” —c(z)u = 0 on the boubded interval a < z < b with u(z) =0
on the boundary, so u(a) = 0 and w(b) = 0. Assuming that ¢(x) > 0, show
that then the only possibility is u(z) = 0 throughout the interval. [SUGGESTION:
Multiply the equation by u and integrate over the interval. Then integrate by
parts.] The example v’ +u = 0 on 0 < z < m, one of whose solutions is sinz
shows that the assumption ¢(z) > 0 plays a vital role.

b) Say u(z,y) satisfies Au — ¢(x,y)u = 0 in a bounded region 2 in the plane with
u(z,y) = 0 on the boundary, 9. Assuming that ¢(x,y) > 0, show that then the
only possibility is u(z,y) = 0 throughout €.

¢) Let u(z,y) and v(z,y) satisfy Au—c(z,y)u = f(z,y) in Q with u(z,y) = ¢(z,y)
on 9, as well as Av — ¢(z,y)v = f(z,y) in Q with v(z,y) = ¢(z,y) on 9N, so
they satisfy the same differential equation and the same boundary condition. As
above, assume c¢(z,y) > 0. Show that u = v throughout Q.

a) [VIBRATING STRING| Let u(z,t) be a solution of the wave equation uy = uyy
in one space variable, say 0 < z < L. Assume the ends of the string are fixed:



u(0,¢) =0 and u(L,t) = 0. Define the energy as

1

L
E(t) .= 2/0 [uf +uZ] dz.

Show that energy is conserved: dE/dt = 0. [HINT: At some step of the computa-
tion integrate by parts using that because of the boundary condition, the velocity
is zero at the end points.]

b) Use this to show that if the initial position and initial velocity are zero, so u(z,y,0) =
0, ui(z,y,0) =0, Then (z,y,t) =0 for all (z,y) € Q and all £ > 0.

c) [VIBRATING DRUMHEAD| Let u(z,y,t) be a solution of the wave equation wu; =
Ugy + Uy for (z,y) in a bounded set  in R? (the drumhead). Assume the
drumhead is fixed along its boundary: u(z,y,t) = 0 for (z,y) € 9. Define the

energy as
1
E(t) := 3 // [uf + |Vul?] dzdy.
Q

Show that energy is conserved: dE/dt =0.

Bonus Problem
[Please give these directly to Professor Kazdan]

NOTATION:  Let u(z,y) be a smooth function on the plane (actually, we will only use
that the second derivatives are continuous) and D C R? be an open region. Given a point
p € D, let B.(p) be the closed disk of radius r centered at p and contained in D for
0 <r < R (so just pick R sufficiently small). Define I(r) by

1
I(r) .= — uds.
2mwr BBT(p)

This is just the average of u on this circle.
B-1 [Marsden-Tromba p.438-9 # 29-34]

a) Show that lim, o I(r) = u(p).

b) Let n denote the unit outer normal to 9B, and define du/dn := Vu - n (this is
the directional derivative of w in the direction of the outer normal). Show that

% ds = / AudA.
aB, On B,

¢) Use this to show that I'(r) = QL // AudA.
wr B,



d) Suppose that « is a harmonic function, that is, Au = 0 in D. Use the above to
deduce the mean value property of harmonic functions

1
- — ds.
ulp) =5 o 08

This states the the value of u at the center of a disk is the average of its values on
the circumference.

e) From the previous part, deduce the “solid mean value property”

)= [ van

f) If w is harmonic in D and has a local maximum at some point p in D, show that
u must be a constant in some small disk centered at p.

g) Assuming that D is connected, show that if 4 is harmonic in D and has its absolute
mazimum at some point p in D (so u(p) > u(q) for all points ¢ € D), then u
must be a constant D.

Similarly, if u has its absolute minimum at some point p in D, then u must be a
constant in D.

[Last revised: May 10, 2012]



