Problem Set 2

Due: In class Thursday, Jan. 26. Late papers will be accepted until 1:00 PM Friday.

1. Which of the following sets of vectors are bases for \mathbb{R}^{2} ?
a). $\{(0,1),(1,1)\}$
d). $\{(1,1),(1,-1)\}$
b). $\{(1,0),(0,1),(1,1)\}$
e). $\{((1,1),(2,2)\}$
c). $\{(1,0),(-1,0\}$
f). $\{(1,2)\}$
2. a) Compute the dimension of the intersection of the following two planes in \mathbb{R}^{3}

$$
x+2 y-z=0, \quad 3 x-3 y+z=0 .
$$

b) A map $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is defined by the matrix $L:=\left(\begin{array}{rrr}1 & 1 & -1 \\ 3 & -3 & 1\end{array}\right)$. Find the nullspace (kernel) of L.
3. For which real numbers x do the vectors: $(\lambda, 1,1,1),(1, \lambda, 1,1),(1,1, \lambda, 1),(1,1,1, \lambda)$ not form a basis of \mathbb{R}^{4} ? For each of the values of x that you find, what is the dimension of the subspace of \mathbb{R}^{4} that they span?
4. Compute the dimension and find bases for the following linear spaces.
a) Real 4×4 matrices whose diagonal elements are zero.
b) Quartic polynomials p with the property that $p(2)=0$ and $p(3)=0$.
c) Cubic polynomials $p(x, y)$ in two real variables with the properties: $p(0,0)=0$, $p(1,0)=0$ and $p(0,1)=0$. [Suggestion: As a warm-up exercise, try quadratic polynomials $p(x, y)=a+b x+c y+d x^{2}+e x y+f y^{2}$ with $p(1,0)=0$.]
d) The space of linear maps $L: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ whose kernels contain ($0,2,-3,0,1$). [SugGESTION: As a warm-up exercise, try linear maps $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ whose kernels contain $(0,2,-3)$.]
5. Let $C(\mathbb{R})$ be the linear space of all continuous functions from \mathbb{R} to \mathbb{R}.
a) Let S_{c} be the set of differentiable functions $u(x)$ that satisfy the differential equation

$$
u^{\prime}=2 x u+c
$$

for all real x. For which value(s) of the real constant c is this set a linear subspace of $C(\mathbb{R})$?
b) Let $C^{2}(\mathbb{R})$ be the linear space of all functions from \mathbb{R} to \mathbb{R} that have two continuous derivatives and let S_{f} be the set of solutions $u(x) \in C^{2}(\mathbb{R})$ of the differential equation

$$
u^{\prime \prime}+2 x u=f(x)
$$

for all real x. For which polynomials $f(x)$ is the set S_{f} a linear subspace of $C(\mathbb{R})$? [Note: You are not being asked to solve this equation.]
c) Let \mathcal{A} and \mathcal{B} be linear spaces and $L: \mathcal{A} \rightarrow \mathcal{B}$ be a linear map. For which vectors $y \in \mathcal{B}$ is the set

$$
\mathcal{S}_{y}:=\{x \in \mathcal{A} \mid L x=y\}
$$

a linear space?
6. Let U and V both be two-dimensional subspaces of \mathbb{R}^{5}.
a) Let $W:=U \cap V$. Show that W is a linear space and find all possible values for the dimension of W.
b) Let $Z:=U+V$ as the set of all vectors $z=u+v$ where $u \in U$ and $v \in V$ can be any vectors. Show that W is a linear space and find all possible values for the dimension of W.
7. Linear maps $F(X)=A X$, where A is a matrix, have the property that $F(0)=A 0=0$, so they necessarily leave the origin fixed. It is simple to extend this to include a translation,

$$
F(X)=V+A X,
$$

where V is a vector. Note that $F(0)=V$. [These are called affine maps].
a) Find the vector V and the matrix A that describe each of the following mappings [here the light blue F is mapped to the dark red F].

ii).

b) Show that the set of all affine maps from \mathbb{R}^{2} to \mathbb{R}^{2} forms a linear space. What is its dimension?
8. a) Find set Q of all linear maps $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ whose nullspace is exactly the plane $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+2 x_{2}-x_{3}=0\right\}$.
b) Is this set a linear space? If so, what is its dimension?

Bonus Problem

[Please give these directly to Professor Kazdan]
1-B In the notes on Symmetries:
http://www.math.upenn.edu/ kazdan/260S12/notes/symmetries.pdf
do the Exercise at the bottom of page 2:
a) Use $R S=S R^{3}$ to show that the maps $R S R, R^{2} S$, and $R S R^{-1}$ are in the list (5).
b) Prove that the list (5) really does contain all the symmetries of the square. I suggest beginning with the special case where the vertex A is fixed. What are the possible adjacent vertices? A key ingredient is that the symmetries of the square are rigid motions, that is, they preserve distances between points, so no stretching or shrinking is allowed.
[Last revised: January 24, 2012]

