Problem Set 3

Due: In class Thursday, Feb. 2. Late papers will be accepted until 1:00 PM Friday.

1. Say you have k linear algebraic equations in n variables; in matrix form we write $A X=Y$. Give a proof or counterexample for each of the following.
a) If $n=k$ there is always at most one solution.
b) If $n>k$ you can always solve $A X=Y$.
c) If $n>k$ the nullspace of A has dimension greater than zero.
d) If $n<k$ then for some Y there is no solution of $A X=Y$.
e) If $n<k$ the only solution of $A X=0$ is $X=0$.
2. Let A and B be $n \times n$ matrices with $A B=0$. Give a proof or counterexample for each of the following.
a) $B A=0$
b) Either $A=0$ or $B=0$ (or both).
c) If B is invertible then $A=0$.
d) There is a vector $V \neq 0$ such that $B A V=0$.
3. Consider the system of equations

$$
\begin{aligned}
& x+y-z=a \\
& x-y+2 z=b .
\end{aligned}
$$

a) Find the general solution of the homogeneous equation.
b) A particular solution of the inhomogeneous equations when $a=1$ and $b=2$ is $x=1, y=1, z=1$. Find the most general solution of the inhomogeneous equations.
c) Find some particular solution of the inhomogeneous equations when $a=-1$ and $b=-2$.
d) Find some particular solution of the inhomogeneous equations when $a=3$ and $b=6$.
[Remark: After you have done part a), it is possible immediately to write the solutions to the remaining parts.]
4. Let $A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & -1 & 2\end{array}\right)$.
a) Find the general solution \mathbf{Z} of the homogeneous equation $A \mathbf{Z}=0$.
b) Find some solution of $A \mathbf{X}=\binom{1}{2}$
c) Find the general solution of the equation in part b).
d) Find some solution of $A \mathbf{X}=\binom{-1}{-2}$ and of $A \mathbf{X}=\binom{3}{6}$
e) Find some solution of $A \mathbf{X}=\binom{3}{0}$
f) Find some solution of $A \mathbf{X}=\binom{7}{2}$. [Note: $\left.\binom{7}{2}=\binom{1}{2}+2\binom{3}{0}\right]$.
[Remark: After you have done parts a), b) and e), it is possible immediately to write the solutions to the remaining parts.]
5. Let $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, so $B A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $A B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
a) Show that $B A$ can not be invertible.
b) Give an example showing that $A B$ might be invertible.
6. Given the five data points:

$$
P_{1}=(-1,1), \quad P_{2}=(0,0), \quad P_{3}=(1,0), \quad P_{4}=(2,2), \quad P_{5}=(3,0),
$$

find the (unique!) quartic polynomial $p(x)$ that passes through these points. [Don't bother to "simplify" your answer.]

The next sequence of problems involve techniques for explicitely solving the ordinary differential equation

$$
L u:=a(x) u^{\prime \prime}+b(x) u^{\prime}+c(x) u=f(x)
$$

in the very special (but important) special case where the coefficients $a(x), b(x)$, and $c(x)$ are constants with $a \neq 0$, and the right hand side $f(x)$ is simple. These assume you have mastered the ideas concerning the complex exponential $e^{x+i y}$ in http://www.math.upenn.edu/ kazdan/260S12/hw/hw0.pdf

7. Homogeneous equation example

a) Let $L u:=u^{\prime \prime}+u^{\prime}-2 u$. Find two linearly independent solutions of the homogeneous equation of the form $u(x)=e^{r x}$ where r is a constant, possibly complex.
b) Seek (and find) solutions $\mathrm{u}(\mathrm{t})$ of $u^{\prime \prime}+2 u^{\prime}+5 u=0$ in the form $u(t)=e^{r x}$, where r might be a complex number. Use this to find two linearly independent real solutions. [See Homework Set 0].
c) Find a solution of $u^{\prime \prime}+2 u^{\prime}+5 u=0$ that satisfies the initial conditions $u(0)=1$, $u^{\prime}(0)=0$.
8. Homogeneous equation Let $L u:=a u^{\prime \prime}+b u^{\prime}+c u$ where the coefficients are real constants with $a \neq 0$. Show that $L\left(e^{r x}\right)=p(r) e^{r x}$, where $p(r)$ is a quadratic polynomial. Assume the roots of $p(r)=0$ are distinct
a) Find two linearly independent solutions (possibly complex) of the homogeneous equation $L u=0$.
b) If the solutions you just found are complex-valued functions, use them to find two linearly independent real solutions.
9. Inhomogeneous equation Example: Find some particular solution $v(x)$ of $v^{\prime \prime}+$ $v=x^{2}-1$. [Suggestion: Since the right hand side is a quadratic polynimial and the coefficients of the differential equation are constants, seek $v(x)$ as a quadratic polynomial: $\left.\quad v(x)=A+B x+C x^{2}\right]$.

This experiment leads one to the general approach of the next problem on finding a particular solution of the inhomogeneous equation when $f(x)$ is a polynomial.
10. Inhomogeneous equation: polynomial Let \mathcal{P}_{N} be the linear space of polynomials of degree at most N and $L: \mathcal{P}_{N} \rightarrow \mathcal{P}_{N}$ the linear map defined by $L u:=a u^{\prime \prime}+b u^{\prime}+c u$, where a, b, and c are constants. Assume $c \neq 0$ (and $a \neq 0$).
a) Compute $L\left(x^{k}\right)$.
b) Show that nullspace (=kernel) of $L: \mathcal{P}_{N} \rightarrow \mathcal{P}_{N}$ is 0 . [A strict proof uses induction - but it is convincing enough to treat the case $N=3$.]
c) Show that for every polynomial $q(x) \in \mathcal{P}_{N}$ there is one and only one solution $p(x) \in \mathcal{P}_{N}$ of the ODE $L p=q$. [A strict proof uses induction - but it is convincing enough to treat the case $N=3$.]
11. Inhomogeneous equation Example: Use the observation in Problem 8 to find particular solutions of
a) $u^{\prime \prime}-4 u=2 e^{3 x}$
b) $u^{\prime \prime}-4 u=\cos x \quad$ [Hint: $\cos x$ is the real part of $e^{i x}$.]
c) $u^{\prime \prime}-4 u=\cos x+2 \sin x$
d) $u^{\prime \prime}-4 u=e^{x} \cos x$. [Not assigned - but useful.]
12. Let $u_{p}(t)$ be a particular solution of the inhomogeneous equation $L u:=u^{\prime \prime}+b u^{\prime}+c u=$ $f(t)$, where b and c are real constants. Assuming $u_{p}(t)$ is bounded for all $t \geq 0$ (that is, for some constant M we have $\left|u_{p}(t)\right| \leq M$ for all $t \geq 0$), find the conditions on the coefficients b and c that guarentee that all solutions of $L u=f$ are bounded for all $t \geq 0$.

Bonus Problems

[Please give these directly to Professor Kazdan]
1-B [Error in Interpolation] Let $x_{0}<x_{1}<x_{2}$ be distinct real numbers and $f(x)$ a smooth function. In class we showed there is a unique quadratic polynomial $p(x)$ with the property that $p\left(x_{j}\right)=f\left(x_{j}\right)$ for $j=0,1,2$. Here you find a formula for the error: $=f(x)-p(x)$.
If b is in the open interval $\left(x_{0}, x_{2}\right)$ with $b \neq x_{j}, j=0,1,2$, show there is a point c (depending on b) in the interval (x_{0}, x_{2}) so that

$$
f(b)=p(b)+\frac{f^{\prime \prime \prime}(c)}{3!}\left(b-x_{0}\right)\left(b-x_{1}\right)\left(b-x_{2}\right) .
$$

This estimate is related to the procedure used to find the remainder in a Taylor polynomial.
[Suggestion: Define the constant M by

$$
f(b)=p(b)+M\left(b-x_{0}\right)\left(b-x_{1}\right)\left(b-x_{2}\right),
$$

and look at

$$
g(x):=f(x)-\left[p(x)+M\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\right] .
$$

Now observe that $g(x)=0$ at x_{0}, x_{1}, x_{2}, and b (by definition of M).]

2-B Let $L u:=u^{\prime \prime}+b u^{\prime}+c u=0$, where b and c are constants.
a) If $w(x)$ is a solution of the homeneous equation $L w=0$ with initial conditions $w(0)=0$ and $w^{\prime}(0)=0$, show that $w(x)=0$ for all $x \geq 0$.
b) Make the change of variable $x=-t$ and show that as a function of $t w$ satisfies:

$$
\frac{d^{2} w}{d t}-b \frac{d w}{d t}+c w=0 \quad \text { with } \quad w(0)=0 \quad \text { and } \quad w^{\prime}(0)=0 .
$$

This has the same structure as the original equation, only the sign of b is flipped so by applying part a), conclude that $w(x)=0$ for all x.
c) Use this to state and prove a uniqueness theorem for the inhomoheneous equation $L u=f(x)$ with $u(0)=\alpha$ and $u^{\prime}(0)=\beta$
[Last revised: May 23, 2012]

