Jerry L. Kazdan

Problem Set 4

DUE: Never [Exam 1 is on Thursday, Feb.9, 12:00-1:20]

Unless otherwise stated use the standard Euclidean norm.

- 1. In \mathbb{R}^2 , define the new norm of a vector V = (x, y) by ||V|| := 2|x| + |y|. Show this satisfies the properties of a norm. [REMARK: This is a "taxicab" norm where, because of traffic it is twice as expensive to go across town than up town.]
- 2. a) In \mathbb{R}^3 , find the distance from the point (1,1,1) to the plane x + 2y z = 3.
 - b) In \mathbb{R}^4 , compute the distance from the point (1, -2, 0, 3) to the hyperplane $x_1 + 3x_2 x_3 + x_4 = 3$.
- 3. a) In \mathbb{R}^3 , find an orthogonal basis for the plane x + 2y z = 0.
 - b) Use it to find the orthogonal projection of V = (1, 0, -1) into this plane.
 - c) What is the orthogonal projection of V perpendicular to this plane?
- 4. In \mathbb{R}^5 , write $X = (x_1, x_2, x_3, x_4, x_5)$ and let S be the subspace spanned by the vectors

 $V_1 := (1, 0, 0, 0, 0), \quad V_2 := (0, 3, 4, 0, 0), \quad V_3 := (0, 4, -3, 0, 0).$

Find the orthogonal projection $P_S(X)$ of X into S and the projection of X orthogonal to S.

- 5. Let V, W be vectors in \mathbb{R}^n with the usual Euclidean norm. Prove the *parallelogram* identity $\|V + W\|^2 + \|V W\|^2 = 2\|V\|^2 + 2\|W\|^2$ and interpret it geometrically.
- 6. Find all vectors in the plane (through the origin) spanned by $\mathbf{V} = (1, 1 2)$ and $\mathbf{W} = (-1, 1, 1)$ that are perpendicular to the vector $\mathbf{Z} = (2, 1, 2)$.
- 7. In \mathbb{R}^3 , let V be a non-zero vector and X_0 and P points.
 - a) Find the equation of the plane through X_0 that is orthogonal to V, so V is a *normal vector* to this plane.
 - b) Compute the distance from this plane to the origin and also to the point P.
 - c) Let S be the sphere centered at P with radius r. For which value(s) of r is this sphere tangent to the above plane?
- 8. Let U, V, W be orthogonal vectors and let Z = aU + bV + cW, where a, b, c are scalars.

- a) (Pythagoras) Show that $||Z||^2 = a^2 ||U||^2 + b^2 ||V||^2 + c^2 ||W||^2$.
- b) Find a formula for the coefficient a in terms of U and Z only. Then find similar formulas for b and c. [Suggestion: take the inner product of Z = aU + bV + cW with U].

REMARK The resulting simple formulas are one reason that orthogonal vectors are easier to use than more general vectors. This is vital for Fourier series.

c) Solve the following equations:

x + y + z + w	=	2
x + y - z - w	=	3
x - y + z - w	=	0
x - y - z + w	=	-5

[Suggestion: Observe that the columns vectors in the coefficient matrix are orthogonal.]

- 9. Find the (orthogonal) projection of $\mathbf{x} := (1, 2, 0)$ into the following subspaces:
 - a) The line spanned by $\mathbf{u} := (1, 1, -1)$.
 - b) The plane spanned by $\mathbf{u} := (0, 1, 0)$ and $\mathbf{v} := (0, 0, -2)$
 - c) The plane spanned by $\mathbf{u} := (0, 1, 1)$ and $\mathbf{v} := (0, 1, -2)$
 - d) The plane spanned by $\mathbf{u} := (1, 0, 1)$ and $\mathbf{v} := (1, 1, -1)$
 - e) The plane spanned by $\mathbf{u} := (1, 0, 1)$ and $\mathbf{v} := (2, 1, 0)$.
 - f) The subspace spanned by $\mathbf{u} := (1, 0, 1), \mathbf{v} := (2, 1, 0)$ and $\mathbf{w} := (1, 1, 0)$.
- 10. Using the inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx$, for which values of the real constants α, β, γ are the quadratic polynomials $p_1(x) = 1$, $p_2(x) = \alpha + x$ $p_3(x) = \beta + \gamma x + x^2$ orthogonal? [ANSWER: $p_2(x) = x$, $p_3(x) = x^2 1/3$.]
- 11. Find the function $f \in \text{span} \{1 \sin x, \cos x\}$ that minimizes $\|\sin 2x f(x)\|$, where the norm comes from the inner product

$$\langle f, g \rangle := \int_{-\pi}^{\pi} f(x)g(x) dx$$
 on $C[-\pi, \pi].$

- 12. Find particular solutions of
 - a). $u'' u = \cos 2x$, b). $u'' u = \sin 2x$, c). $u'' u = 2\cos 2x 5\sin 2x$.
- 13. A particular solution of $u'' + 4u = 2x^2$ is $u_p = \frac{1}{2}x^2 1$. Find a solution that satisfies the initial conditions u(0) = 1 and u'(0) = 2.

- 14. Find a solution of $u'' 2u' + 2u = \cos 3x$ that satisfies the initial conditions u(0) = 0and u'(0) = 0.
- 15. a) Let $f(x) = \begin{cases} -1 & \text{for } -\pi \le x < 0, \\ 1 & \text{for } 0 \le x < \pi \end{cases}$ Find its Fourier series (either using trig functions or the complex exponential).
 - b) Let $g(x) = \begin{cases} 0 & \text{for } -\pi \le x < 0, \\ 1 & \text{for } 0 \le x < \pi \end{cases}$. Find its Fourier series.
- 16. One can find the Fourier series for a function f(x) in either the trigonometric or exponential forms:

$$f(x) = \frac{a_0}{\sqrt{2\pi}} + \sum_{k=1}^{\infty} \left[a_k \frac{\cos kx}{\sqrt{\pi}} + b_k \frac{\sin kx}{\sqrt{\pi}} \right] \quad \text{or} \quad f(x) = \sum_{k=-\infty}^{\infty} c_k \frac{e^{ikx}}{\sqrt{2\pi}}.$$

If f(x) is a real-valued function, by taking the real part of the exponential version, show how to obtain the trig version. NOTE: Recall Euler's formula

$$e^{i\theta} = \cos\theta + i\sin\theta, \quad \cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

[Last revised: February 5, 2012]