Problem Set 4

Due: Never [Exam 1 is on Thursday, Feb.9, 12:00-1:20]

Unless otherwise stated use the standard Euclidean norm.

1. In \mathbb{R}^{2}, define the new norm of a vector $V=(x, y)$ by $\|V\|:=2|x|+|y|$. Show this satisfies the properties of a norm. [REmark: This is a "taxicab" norm where, because of traffic it is twice as expensive to go across town than up town.]
2. a) In \mathbb{R}^{3}, find the distance from the point $(1,1,1)$ to the plane $x+2 y-z=3$.
b) In \mathbb{R}^{4}, compute the distance from the point $(1,-2,0,3)$ to the hyperplane $x_{1}+$ $3 x_{2}-x_{3}+x_{4}=3$.
3. a) In \mathbb{R}^{3}, find an orthogonal basis for the plane $x+2 y-z=0$.
b) Use it to find the orthogonal projection of $V=(1,0,-1)$ into this plane.
c) What is the orthogonal projection of V perpendicular to this plane?
4. In \mathbb{R}^{5},write $X=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ and let S be the subspace spanned by the vectors

$$
V_{1}:=(1,0,0,0,0), \quad V_{2}:=(0,3,4,0,0), \quad V_{3}:=(0,4,-3,0,0) .
$$

Find the orthogonal projection $P_{S}(X)$ of X into S and the projection of X orthogonal to S.
5. Let V, W be vectors in \mathbb{R}^{n} with the usual Euclidean norm. Prove the parallelogram identity $\|V+W\|^{2}+\|V-W\|^{2}=2\|V\|^{2}+2\|W\|^{2}$ and interpret it geometrically.
6. Find all vectors in the plane (through the origin) spanned by $\mathbf{V}=(1,1-2)$ and $\mathbf{W}=(-1,1,1)$ that are perpendicular to the vector $\mathbf{Z}=(2,1,2)$.
7. In \mathbb{R}^{3}, let V be a non-zero vector and X_{0} and P points.
a) Find the equation of the plane through X_{0} that is orthogonal to V, so V is a normal vector to this plane.
b) Compute the distance from this plane to the origin and also to the point P.
c) Let S be the sphere centered at P with radius r. For which value(s) of r is this sphere tangent to the above plane?
8. Let U, V, W be orthogonal vectors and let $Z=a U+b V+c W$, where a, b, c are scalars.
a) (Pythagoras) Show that $\|Z\|^{2}=a^{2}\|U\|^{2}+b^{2}\|V\|^{2}+c^{2}\|W\|^{2}$.
b) Find a formula for the coefficient a in terms of U and Z only. Then find similar formulas for b and c. [Suggestion: take the inner product of $Z=a U+b V+c W$ with $U]$.
Remark The resulting simple formulas are one reason that orthogonal vectors are easier to use than more general vectors. This is vital for Fourier series.
c) Solve the following equations:

$$
\begin{aligned}
x+y+z+w & =2 \\
x+y-z-w & =3 \\
x-y+z-w & =0 \\
x-y-z+w & =-5
\end{aligned}
$$

[Suggestion: Observe that the columns vectors in the coefficient matrix are orthogonal.]
9. Find the (orthogonal) projection of $\mathbf{x}:=(1,2,0)$ into the following subspaces:
a) The line spanned by $\mathbf{u}:=(1,1,-1)$.
b) The plane spanned by $\mathbf{u}:=(0,1,0)$ and $\mathbf{v}:=(0,0,-2)$
c) The plane spanned by $\mathbf{u}:=(0,1,1)$ and $\mathbf{v}:=(0,1,-2)$
d) The plane spanned by $\mathbf{u}:=(1,0,1)$ and $\mathbf{v}:=(1,1,-1)$
e) The plane spanned by $\mathbf{u}:=(1,0,1)$ and $\mathbf{v}:=(2,1,0)$.
f) The subspace spanned by $\mathbf{u}:=(1,0,1), \mathbf{v}:=(2,1,0)$ and $\mathbf{w}:=(1,1,0)$.
10. Using the inner product $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$, for which values of the real constants α, β, γ are the quadratic polynomials $\quad p_{1}(x)=1, \quad p_{2}(x)=\alpha+x \quad p_{3}(x)=\beta+\gamma x+x^{2}$ orthogonal? [ANSWER: $p_{2}(x)=x, p_{3}(x)=x^{2}-1 / 3$.]
11. Find the function $f \in \operatorname{span}\{1 \sin x, \cos x\}$ that minimizes $\|\sin 2 x-f(x)\|$, where the norm comes from the inner product

$$
\langle f, g\rangle:=\int_{-\pi}^{\pi} f(x) g(x) d x \quad \text { on } \quad C[-\pi, \pi] .
$$

12. Find particular solutions of

$$
\text { a). } u^{\prime \prime}-u=\cos 2 x, \quad \text { b). } u^{\prime \prime}-u=\sin 2 x, \quad \text { c). } u^{\prime \prime}-u=2 \cos 2 x-5 \sin 2 x .
$$

13. A particular solution of $u "+4 u=2 x^{2}$ is $u_{p}=\frac{1}{2} x^{2}-1$. Find a solution that satisfies the initial conditions $u(0)=1$ and $u^{\prime}(0)=2$.
14. Find a solution of $u^{\prime \prime}-2 u^{\prime}+2 u=\cos 3 x$ that satisfies the initial conditions $u(0)=0$ and $u^{\prime}(0)=0$.
15. a) Let $f(x)=\left\{\begin{aligned}-1 & \text { for }-\pi \leq x<0, \\ 1 & \text { for } 0 \leq x<\pi\end{aligned}\right.$. Find its Fourier series (either using trig functions or the complex exponential).
b) Let $g(x)=\left\{\begin{array}{ll}0 & \text { for }-\pi \leq x<0, \\ 1 & \text { for } 0 \leq x<\pi\end{array}\right.$. Find its Fourier series.
16. One can find the Fourier series for a function $f(x)$ in either the trigonometric or exponential forms:

$$
f(x)=\frac{a_{0}}{\sqrt{2 \pi}}+\sum_{k=1}^{\infty}\left[a_{k} \frac{\cos k x}{\sqrt{\pi}}+b_{k} \frac{\sin k x}{\sqrt{\pi}}\right] \quad \text { or } \quad f(x)=\sum_{k=-\infty}^{\infty} c_{k} \frac{e^{i k x}}{\sqrt{2 \pi}} .
$$

If $f(x)$ is a real-valued function, by taking the real part of the exponential version, show how to obtain the trig version. Note: Recall Euler's formula

$$
e^{i \theta}=\cos \theta+i \sin \theta, \quad \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

[Last revised: February 5, 2012]

