Problem Set 5

DUE: In class Thursday, Feb. 16. Late papers will be accepted until 1:00 PM Friday.

Unless otherwise stated use the standard Euclidean norm.

- 1. a) Let $f(x) = \begin{cases} -1 & \text{for } -\pi \le x < 0, \\ 1 & \text{for } 0 \le x < \pi \end{cases}$ Find its Fourier series (either using trig functions or the complex exponential).
 - b) There is an extension of the Pythagorean Theorem that expresses $||f||^2$ in terms of the Fourier coefficients. What does that assert for this function?
 - c) Let $g(x) = \begin{cases} 0 & \text{for } -\pi \le x < 0, \\ 1 & \text{for } 0 \le x < \pi \end{cases}$. Find its Fourier series.
- 2. For complex vectors $Z = (z_1, z_2, \ldots, z_n)$ recall that we used the inner product

$$\langle Z, W \rangle := z_1 \bar{w}_1 + \cdots + z_n \bar{w}_n.$$

Say you have an $n \times n$ matrix $A := (a_{jk})$ whose elements a_{jk} may be complex numbers. Define its *adjoint* A^* by the rule $\langle A^*Z, W \rangle = \langle Z, AW \rangle$ for all complex vectors Z, W. Find a formula for the elements of A^* in terms of the elements of A. [First do the 1×1 and 2×2 casesz.]

- 3. A square real matrix is called symmetric (or self-adjoint) if $A = A^*$. It is called anti-symmetric (or skew-adjoint) if $A = -A^*$.
 - a) If a real matrix is anti-symmetric, show that the elements on its diagonal must all be zero.
 - b) If A is a square real matrix, shot there is a unique symmetric matrix A_+ and a unique anti-symmetric matrix A_- such that $A = A_+ + A_-$. [Find formulas for A_+ and A_- in terms of A and A^* .]
 - c) Find a symmetric 3×3 matrix A so that

$$\langle X, AX \rangle = 3x_1^2 + 4x_1x_2 - x_2^2 - x_2x_3$$

SUGGESTION: First do the simpler case of finding a 2×2 matrix A so that

$$\langle X, AX \rangle = 3x_1^2 + 4x_1x_2 - x_2^2.$$

A simple but useful observation is that $4x_1x_2 = 2x_1x_2 + 2x_2x_1$.

d) If S is anti-symmetric, show that $\langle X, SX \rangle = 0$ for all real vectors X. MORAL: In considering the quadratic polynomial $\langle X, AX \rangle$ we always take A to be symmetric.

4. [Completing the Square] Let

$$Q(x) = \sum a_{ij}x_ix_j + \sum b_ix_i + c$$
$$= \langle x, Ax \rangle + \langle b, x \rangle + c$$

be a real quadratic polynomial so $x = (x_1, \ldots, x_n)$, $b = (b_1, \ldots, b_n)$ are real vectors and $A = a_{ij}$ is a real symmetric $n \times n$ matrix. Just as in the case n = 1, if A is invertible show there is a change of variables y = x - v (this is a translation by the vector v) so that in the new y variables Q has the form

$$\hat{Q}(y) := Q(y+v) = \langle y, Ay \rangle + \gamma$$
 that is, $\hat{Q}(y) = \sum a_{ij} y_i y_j + \gamma$,

where γ involves A, b, and c – but no terms that are linear in y. [In the case n = 1, which you should try *first*, this means using a change of variables y = x - v to change the polynomial $ax^2 + bx + c$ to the simpler $ay^2 + \gamma$.]

As an example, apply this to $Q(x) = 2x_1^2 + 2x_1x_2 + 3x_2 - 4$.

5. We can define the derivative of a vector X(t) that depends on a real parameter t as the usual limit W(t) = W(t) = W(t)

$$\frac{dX(t)}{dt} = \lim_{h \to 0} \frac{X(t+h) - X(t)}{h}$$

It is easy to see that this is the same as differentiating each component of the vector. If X(t) gives the path of a particle at time t, then X'(t) is the velocity vector. It is tangent to the path.

a) Show that the following product rule holds:

$$\frac{d}{dt}\langle X(t), Y(t)\rangle = \langle X'(t), Y(t)\rangle + \langle X(t), Y'(t)\rangle.$$

- b) Let Z be a fixed vector (not depending on t). If X'(t) is orthogonal to Z and X(0) is orthogonal to Z, show that the path X(t) is orthogonal to Z for all t.
- c) If the position X(t) of a particle move on a sphere of radius R, so ||X(t)|| = R show that the position and velocity are orthogonal for all t.
- 6. Say X(t) is a solution of the differential equation $\frac{dX}{dt} = AX$, where A is an *anti-symmetric* matrix. Show that ||X(t)|| = constant.
- 7. Say X(t) is a curve in \mathbb{R}^3 and $P \in \mathbb{R}^3$ is a point not on the curve. Assume there is a point $Q := X(t_0)$ on the curve that is closest to P. Show that the straight line from Q to P is perpendicular to the curve (that is, perpendicular to its tangent line at the point).

The next sequence of problems all concern the METHOD OF LEAST SQUARES. As a reference, see http://www.math.upenn.edu/~kazdan/260S12/notes/vectors/vectors6.pdf (Notes on inner products)

8. Use the Method of Least Squares to find the straight line y = ax + b that best fits the following data given by the following four points $(x_j, y_j), j = 1, ..., 4$:

$$(-2,4),$$
 $(-1,3),$ $(0,1),$ $(2,0).$

Ideally, you'd like to pick the coefficients a and b so that the four equations $ax_j+b=y_j$, $j=1,\ldots,4$ are all satisfied. Since this probably can't be done, one uses least squares to find the best possible a and b.

9. Find a curve of the form $y = a + bx + cx^2$ that best fits the following data

x	-2	-1	0	1	2	3	4
y	4	1.1	-0.5	1.0	4.3	8.1	17.5

10. The water level in the North Sea is mainly determined by the so-called M2 tide, whose period is about 12 hours. The height H(t) thus roughly has the form

$$H(t) = c + a\sin(2\pi t/12) + b\cos(2\pi t/12), \tag{1}$$

where time t is measured in hours (note $\sin(2\pi t/12)$ and $\cos(2\pi t/12)$) are periodic with period 12 hours). Say one has the following measurements:

t (hours)	0	2	4	6	8	10
H(t) (meters)	1.0	1.6	1.4	0.6	0.2	0.8

Find the coefficients a, b, and c in (1) that best fit this data.

11. The comet Tentax, discovered only in 1968, moves within the solar system. The following are observations of its position (r, θ) in a polar coordinate system with center at the sun:

r	2.70	2.00	1.61	1.20	1.02
θ	48	67	83	108	126

(here θ is an angle measured in degrees).

By Kepler's first law the comet should move in a plane orbit whose shape is either an ellipse, hyperbola, or parabola (this assumes the gravitational influence of the planets is neglected). Thus the polar coordinates (r, θ) satisfy

$$r = \frac{p}{1 - e\cos\theta}$$

where p and the eccentricity e are parameters describing the orbit. Use the data to estimate p and e by the method of least squares. Hint: Make some (simple) preliminary manipulation so the parameters p and e appear *linearly*; then apply the method of least squares.

Bonus Problem

[Please give these directly to Professor Kazdan]

B-1 a) Compute $\max \int_{-1}^{1} x^{3}h(x) dx$ where h(x) is any continuous function on the interval $-1 \le x \le 1$ subject to the restrictions

$$\int_{-1}^{1} h(x) \, dx = \int_{-1}^{1} x h(x) \, dx = \int_{-1}^{1} x^2 h(x) \, dx = 0; \quad \int_{-1}^{1} |h(x)|^2 \, dx = 1.$$

b) Compute
$$\min_{a,b,c} \int_{-1}^{1} |x^3 - a - bx - cx^2|^2 dx$$
.

- B-2 [DUAL VARIATIONAL PROBLEMS] Let $V \subset \mathbb{R}^n$ be a linear space, $Q: R^n \to V^{\perp}$ the orthogonal projection into V^{\perp} , and $x \in \mathbb{R}^n$ a given vector. Note that Q = I P, where P in the orthogonal projection into V
 - a) Show that $\max_{\{z \perp V, \|z\|=1\}} \langle x, z \rangle = \|Qx\|.$

whose extremal values are equal.]

b) Show that $\min_{v \in V} ||x - v|| = ||Qx||$. [Remark: dual variational problems are a pair of maximum and minimum problems

[Last revised: February 27, 2012]