Math 260, Spring 2012

Jerry L. Kazdan

Problem Set 6

DUE: In class Thursday, Feb. 23. Late papers will be accepted until 1:00 PM Friday.

Unless otherwise stated use the standard Euclidean norm.

1. Let u(x,t) be the temperature at time t at a point x on a homogeneous rod of length π , say $0 \le x \le \pi$. Assume u satisfies the *heat equation*

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

with boundary conditions

 $u(0,t) = 0, \qquad \frac{\partial u}{\partial x}\Big|_{x=\pi} = 0$ (so the right end is insulated)

and initial condition

$$u(x,0) = \sin \frac{5}{2}x.$$

- a) Find the solution.
- b) Use $Q(t) = \frac{1}{2} \int_0^{\pi} u^2(x, t) dx$ to prove there is at most one solution (uniqueness).

2. [Marsden-Tromba Sec. 2.4#1-2] Sketch the curves

a). $x = \sin t, y = 4\cos t, 0 \le t \le 2\pi$ b). $x = 2\sin t, y = 4\cos t, 0 \le t \le 2\pi$

3. Consider the curve $F(t) = (\sin 2t, 1 - 3t, \cos 2t, 2t^{3/2})$ for $0 \le t \le 2\pi$.

- a) Find the equation of the tangent line at $t = \pi/2$.
- b) Find the length of this curve.
- 4. [Marsden-Tromba Sec. 2.4#20] Suppose a particle follows the path $\mathbf{c}(t) = (e^t, e^{-t}, \cos \pi t)$ and flies off on the tangent at t = 1. What is its position at t = 2?
- 5. [Marsden-Tromba Sec. 4.2#17] Say a path X(s) is parametrized by arc length s, so ||X'(s)|| = 1. The curvature, k(s), at a point X(s) is defined by $k(s) := ||\frac{d^2X(s)}{ds^2}||$. Calculate the curvature of the following curves. Note that for the first step you will need to find the arc length function s(t).
 - a) Circle of radius $r: X(t) := (r \cos t, r \sin t)$.
 - b) Helix: $H(t) := \frac{1}{\sqrt{2}} (\cos t, \sin t, ct)$, where c is a constant.

- 6. Let $X(t) : \mathbb{R}^1 \to \mathbb{R}^3$ be a smooth curve with the property that X''(t) = 0 for all t. What can you conclude? Prove your assertion.
- 7. Let $X(t) : \mathbb{R}^1 \to \mathbb{R}^3$ be a twice differentiable function that satisfies the ordinary differential equation

$$X'' + \mu X' + kX = 0,$$
 (1)

where k and μ are *positive* constants. Define the "energy" as

$$E(t) := \frac{1}{2} [\|X'\|^2 + k\|X\|^2,$$

where we use the usual Euclidean norm in \mathbb{R}^3 .

- a) Show that $dE/dt \leq 0$.
- b) Show that there is at most one solution of the ODE (1) with initial conditions X(0) = A, and X'(0) = B, where A and B are given vectors in \mathbb{R}^3 .

Bonus Problem

[Please give these directly to Professor Kazdan]

B-1 Let $A : \mathbb{R}^n \to \mathbb{R}^k$ be a linear map. If A is not one-to-one, but the equation Ax = y has some solution, then it has many. Is there a "best" possible answer? What can one say? Think about this before reading the next paragraph.

If A is onto, so there is some solution of Ax = y, show there is exactly one solution x_1 of the form $x_1 = A^*w$ for some w, so $AA^*w = y$. Moreover of all the solutions x of Ax = y, show that x_1 is closest to the origin (in the Euclidean distance). [REMARK: This situation is related to the case where where A is not onto, so there may not be a solution — but the method of least squares gives an "best" approximation to a solution.]

B-2 Let P_1, P_2, \ldots, P_k be k points (think of them as *data*) in \mathbb{R}^3 and let S be the plane

$$\mathcal{S} := \left\{ X \in \mathbb{R}^3 : \langle X, N \rangle = c \right\},\$$

where $N \neq 0$ is a unit vector normal to the plane and c is a real constant.

This problem outlines how to find the plane that *best approximates the data points* in the sense that it minimizes the function

$$Q(N,c) := \sum_{j=1}^{k} \operatorname{distance} (P_j, \mathcal{S})^2.$$

Determining this plane means finding N and c.

a) Show that for a given point P, then

distance
$$(P, \mathcal{S}) = |\langle P - X, N \rangle| = |\langle P, N \rangle - c|,$$

where X is any point in \mathcal{S}

b) First do the special case where the center of mass $\overline{P} := \frac{1}{k} \sum_{j=1}^{k} P_j$ is at the origin, so $\overline{P} = 0$. Show that for any P, then $\langle P, N \rangle^2 = \langle N, PP^*N \rangle$. Here view P as a column vector so PP^* is a $k \times k$ matrix.

Use this to observe that the desired plane S is determined by letting N be an eigenvector of the matrix

$$A := \sum_{j=1}^{k} P_j P_j^T$$

corresponding to it's lowest eigenvalue. What is c in this case?

- c) Reduce the general case to the previous case by letting $V_j = P_j \bar{P}$.
- d) Find the equation of the line ax + by = c that, in the above sense, best fits the data points (-1,3), (0,1), (1,-1), (2,-3).
- e) Let $P_j := (p_{j1}, \ldots, p_{j3}), \ j = 1, \ldots, k$ be the coordinates of the j^{th} data point and $Z_{\ell} := (p_{1\ell}, \ldots, p_{k\ell}), \ \ell = 1, \ldots, 3$ be the vector of ℓ^{th} coordinates. If a_{ij} is the ij element of A, show that $a_{ij} = \langle Z_i, Z_j \rangle$. This exhibits A as a *Gram matrix*.
- f) Generalize to where P_1, P_2, \ldots, P_k are k points in \mathbb{R}^n .

[Last revised: March 6, 2012]