Problem Set 6

Due: In class Thursday, Feb. 23. Late papers will be accepted until 1:00 PM Friday.

Unless otherwise stated use the standard Euclidean norm.

1. Let $u(x, t)$ be the temperature at time t at a point x on a homogeneous rod of length π, say $0 \leq x \leq \pi$. Assume u satisfies the heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

with boundary conditions

$$
u(0, t)=0,\left.\quad \frac{\partial u}{\partial x}\right|_{x=\pi}=0 \quad(\text { so the right end is insulated })
$$

and initial condition

$$
u(x, 0)=\sin \frac{5}{2} x .
$$

a) Find the solution.
b) Use $Q(t)=\frac{1}{2} \int_{0}^{\pi} u^{2}(x, t) d x$ to prove there is at most one solution (uniqueness).
2. [Marsden-Tromba Sec. 2.4\#1-2] Sketch the curves
a). $x=\sin t, y=4 \cos t, 0 \leq t \leq 2 \pi$
b). $x=2 \sin t, y=4 \cos t, 0 \leq t \leq 2 \pi$
3. Consider the curve $F(t)=\left(\sin 2 t, 1-3 t, \cos 2 t, 2 t^{3 / 2}\right)$ for $0 \leq t \leq 2 \pi$.
a) Find the equation of the tangent line at $t=\pi / 2$.
b) Find the length of this curve.
4. [Marsden-Tromba Sec. 2.4\#20] Suppose a particle follows the path $\mathbf{c}(t)=\left(e^{t}, e^{-t}, \cos \pi t\right)$ and flies off on the tangent at $t=1$. What is its position at $t=2$?
5. [Marsden-Tromba Sec. 4.2\#17] Say a path $X(s)$ is parametrized by arc length s, so $\left\|X^{\prime}(s)\right\|=1$. The curvature, $k(s)$, at a point $X(s)$ is defined by $k(s):=\left\|\frac{d^{2} X(s)}{d s^{2}}\right\|$. Calculate the curvature of the following curves. Note that for the first step you will need to find the arc length function $s(t)$.
a) Circle of radius $r: \quad X(t):=(r \cos t, r \sin t)$.
b) Helix: $H(t):=\frac{1}{\sqrt{2}}(\cos t, \sin t, c t)$, where c is a constant.
6. Let $X(t): \mathbb{R}^{1} \rightarrow \mathbb{R}^{3}$ be a smooth curve with the property that $X^{\prime \prime}(t)=0$ for all t. What can you conclude? Prove your assertion.
7. Let $X(t): \mathbb{R}^{1} \rightarrow \mathbb{R}^{3}$ be a twice differentiable function that satisfies the ordinary differential equation

$$
\begin{equation*}
X^{\prime \prime}+\mu X^{\prime}+k X=0 \tag{1}
\end{equation*}
$$

where k and μ are positive constants. Define the "energy" as

$$
E(t):=\frac{1}{2}\left[\left\|X^{\prime}\right\|^{2}+k\|X\|^{2},\right.
$$

where we use the usual Euclidean norm in \mathbb{R}^{3}.
a) Show that $d E / d t \leq 0$.
b) Show that there is at most one solution of the ODE (11) with initial conditions $X(0)=A$, and $X^{\prime}(0)=B$, where A and B are given vectors in \mathbb{R}^{3}.

Bonus Problem

[Please give these directly to Professor Kazdan]
B-1 Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be a linear map. If A is not one-to-one, but the equation $A x=y$ has some solution, then it has many. Is there a "best" possible answer? What can one say? Think about this before reading the next paragraph.
If A is onto, so there is some solution of $A x=y$, show there is exactly one solution x_{1} of the form $x_{1}=A^{*} w$ for some w, so $A A^{*} w=y$. Moreover of all the solutions x of $A x=y$, show that x_{1} is closest to the origin (in the Euclidean distance). [Remark: This situation is related to the case where where A is not onto, so there may not be a solution - but the method of least squares gives an "best" approximation to a solution.]

B-2 Let $P_{1}, P_{2}, \ldots, P_{k}$ be k points (think of them as data) in \mathbb{R}^{3} and let \mathcal{S} be the plane

$$
\mathcal{S}:=\left\{X \in \mathbb{R}^{3}:\langle X, N\rangle=c\right\}
$$

where $N \neq 0$ is a unit vector normal to the plane and c is a real constant.
This problem outlines how to find the plane that best approximates the data points in the sense that it minimizes the function

$$
Q(N, c):=\sum_{j=1}^{k} \operatorname{distance}\left(P_{j}, \mathcal{S}\right)^{2}
$$

Determining this plane means finding N and c.
a) Show that for a given point P, then

$$
\operatorname{distance}(P, \mathcal{S})=|\langle P-X, N\rangle|=|\langle P, N\rangle-c|,
$$

where X is any point in \mathcal{S}
b) First do the special case where the center of mass $\bar{P}:=\frac{1}{k} \sum_{j=1}^{k} P_{j}$ is at the origin, so $\bar{P}=0$. Show that for any P, then $\langle P, N\rangle^{2}=\left\langle N, P P^{*} N\right\rangle$. Here view P as a column vector so $P P^{*}$ is a $k \times k$ matrix.
Use this to observe that the desired plane \mathcal{S} is determined by letting N be an eigenvector of the matrix

$$
A:=\sum_{j=1}^{k} P_{j} P_{j}^{T}
$$

corresponding to it's lowest eigenvalue. What is c in this case?
c) Reduce the general case to the previous case by letting $V_{j}=P_{j}-\bar{P}$.
d) Find the equation of the line $a x+b y=c$ that, in the above sense, best fits the data points $(-1,3),(0,1),(1,-1),(2,-3)$.
e) Let $P_{j}:=\left(p_{j 1}, \ldots, p_{j 3}\right), j=1, \ldots, k$ be the coordinates of the $j^{\text {th }}$ data point and $Z_{\ell}:=\left(p_{1 \ell}, \ldots, p_{k \ell}\right), \ell=1, \ldots, 3$ be the vector of $\ell^{\text {th }}$ coordinates. If $a_{i j}$ is the $i j$ element of A, show that $a_{i j}=\left\langle Z_{i}, Z_{j}\right\rangle$. This exhibits A as a Gram matrix .
f) Generalize to where $P_{1}, P_{2}, \ldots, P_{k}$ are k points in \mathbb{R}^{n}.
[Last revised: March 6, 2012]

