Solution to Problem Set $8 \# 7$

Remark: The technique for Problem 11b) is similar. One uses the result from 11a) $u_{x}=$ $\left(w_{r}\right)(x / r)$ noting that on the right side, x arises in three places: w_{r}, x, and r.
7. Say $u(x, t)$ is a solution of the one space dimensional wave equation $u_{t t}=u_{x x}$. Find a linear change of variable

$$
\begin{aligned}
x & =a r+b s, \\
t & =c r+d s
\end{aligned}
$$

so that $v(r, s):=u(a r+b s, c r+d s)$ satisfies

$$
\frac{\partial v}{\partial r \partial s}=0 .
$$

Solution: By the chain rule:

$$
\begin{equation*}
v(r, s)_{r}=u_{x} x_{r}+u_{t} t_{r}=a u_{x}+c u_{t} . \tag{1}
\end{equation*}
$$

We next want to take the partial derivative of this equation with respect to s. This must be done for both u_{x} and u_{t}. We first compute $\partial u_{x}(x(r, s), t(r, s)) / \partial s$. It may help to let $w(x, t):=u_{x}(x, t)$. Then, just as in equation (1)

$$
\frac{\partial w(x(r, s), t(r, s))}{\partial s}=w_{x} x_{s}+w_{t} t_{s}=b w_{x}+d w_{t}=b u_{x x}+d u_{x t} .
$$

Similarly, with $z(x, t):=u_{t}(x, t)$

$$
\frac{\partial z(x(r, s), t(r, s))}{\partial s}=z_{x} x_{s}+z_{t} t_{s}=b z_{x}+d z_{t}=b u_{t x}+d u_{t t} .
$$

Consequently,

$$
v(r, s)_{r s}=a\left[b u_{x x}+d u_{x t}\right]+c\left[b u_{t x}+d u_{t t}\right]=a b u_{x x}+(a d+b c) u_{x t}+c d u_{t t} .
$$

We would like the right-hand side to be $u_{t t}-u_{x x}$, so

$$
a b=-1, \quad a d+b c=0, \quad c d=1 .
$$

One solution is $a=c=d=1, \quad b=-1$. That is, the desired change of variables is

$$
x=r-s, \quad t=r+s
$$

[Last revised: March 9, 2012]

