Problem Set 9

Due: Thurs. March 22. Late papers will be accepted until 1:00 PM Friday.

Unless otherwise stated use the standard Euclidean norm.

1. a) Find the local maxima and minima of $f(x, y):=3 x+4 y$ for $x^{2}+y^{2}<1$.
b) Find the maxima and minima of $f(x, y):=3 x+4 y$ for $x^{2}+y^{2}=1$.
c) Find the global maxima and minima of $f(x, y):=3 x+4 y$ for $x^{2}+y^{2} \leq 1$.
2. a) Let x, y, and z be positive numbers such that $x+y+z=a$, where a is a fixed positive number. How large can their product, $x y z$, be?
b) If x, y, and z are nonnegative, show that

$$
(x y z)^{1 / 3} \leq \frac{x+y+z}{3} .
$$

3. Let $f(x, y):=\left[x^{2}+(y+2)^{2}\right]\left[x^{2}+(y-2)^{2}\right]$.
a) Find and classify all of the critical points of f in \mathbb{R}^{2}.
b) Find the maximum and minimum value of f on the circle $x^{2}+y^{2}=1$.
c) Find the global maximum and minimum value of f in the closed disk $x^{2}+y^{2} \leq 1$.
d) Find the global maximum and minimum value of f in the closed disk $x^{2}+y^{2} \leq 9$.

Note: In Maple

```
w:= (x,y) -> (x^2 + (y+2)^2)*(x^2 + (y-2)^2);
with(plots):
plot3d(w(x,y), x=-2..2, y=-3.2..3.2, view=-0.5..50, axes=normal);
```

4. Find the maximum and minimum value of $h(x, y, z):=(x-y)^{2}+z^{2}$ on $x^{2}+y^{2}+z^{2}=18$.
5. In the plane \mathbb{R}^{2}, let $r^{2}=x^{2}+y^{2}$ so r is the distance from the origin to (x, y) and assume that the function $u(x, y)$ depends only on r. Thus $u(x, y)=w(r)$ for some (smooth) function w.
a) Show that $\frac{\partial u}{\partial x}=\frac{d w}{d r} \frac{x}{r}$.
b) Show that

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{d^{2} w}{d r^{2}}\left(\frac{x^{2}}{r^{2}}\right)+\left(\frac{1}{r}-\frac{x^{2}}{r^{3}}\right) \frac{d w}{d r} .
$$

c) Show that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{d^{2} w}{d r^{2}}+\frac{1}{r} \frac{d w}{d r} .
$$

d) Find all functions $u(x, y)$ depending only on r that satisfy the Laplace equation $\Delta u:=u_{x x}+u_{y y}=0$. [Physicists often write Δu as $\nabla^{2} u$ or $\left.\nabla \cdot \nabla u\right]$.
e) Generalize the previous parts to (x, y, z) in \mathbb{R}^{3}. Here $r^{2}=x^{2}+y^{2}+z^{2}$ and the Laplacian equation is $\Delta u:=u_{x x}+u_{y y}+u_{z z}=0$.

6 . Let Ω be the rectangle with vertices at $(-1,0),(1,0),(1,2)$, and (-1.2). Estimate the value of both of the following integrals.
a). $\iint_{\Omega}\left(x^{2}+y^{2}\right) d A$
b). $\iint_{\Omega} x(1-2 y) d A$
7. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a continuous function. Find the exact volume of the solid region bounded from below by $z:=f(x, y)-1$ and bounded from above by $z:=f(x, y)+3$ for $-1 \leq x \leq 5$ and $-2 \leq y \leq 2$.
8. Let $J:=\iint_{\Omega}(x-2 y)^{2} d A$ where Ω is the triangular region bounded by the lines $x=1$, $y=-2$, and $y+2 x=4$.
a) Evaluate this by integrating first with respect to x, so $J=\int_{?}^{?}\left(\int_{?}^{?}(x-2 y)^{2} d x\right) d y$.
b) Evaluate this by integrating first with respect to y.
9. Let $K:=\int_{0}^{1}\left(\int_{0}^{2 x} f(x, y) d y\right) d x$.
a) Draw a sketch of the region of integration $\Omega \subset \mathbb{R}^{2}$.
b) Find the limits of integration if you integrate first with respect to x, so $K=$ $\int_{?}^{?}\left(\int_{?}^{?} f(x, y) d x\right) d y$.

Bonus Problems

[Please give these directly to Professor Kazdan]
B-1 Let A be a real symmetric $n \times n$ matrix. If V is a vector that minimizes the quadratic polynomial $\langle X, A X\rangle$ on the unit sphere $\|X\|^{2}=1$, show there is a number λ so that $A V=\lambda V$. In other words, V is an eigenvector of A with eigenvalue λ. [This is the idea behind the standard procedure physicists use to compute the lowest energy level for a solution of the Schrödinger equation.]

B-2 It is often useful to define surfaces using parametric equations. For instance, a torus is most simply obtained by rotating a circle, say a unit circle centered at $(3,0)$ in the r, z plane, $r(\phi):=3+\cos \phi, z(\phi)=\sin \phi$, around the (vertical) z axis, so:

$$
\begin{aligned}
& x(\theta, \phi):=(3+\cos \phi) \cos \theta \\
& y(\theta, \phi):=(3+\cos \phi) \sin \theta \\
& z(\theta, \phi):=\sin \phi .
\end{aligned}
$$

Here the parameters are θ and ϕ.

Maple:

```
    with(plots):
    a:=3; b:=1;
    r:= phi -> a + b*cos(phi);
    plot3d([r(phi)*cos(theta), r(phi)*sin(theta), b*sin(phi)],
    phi=0..2*Pi, theta=0..2*Pi, scaling=constrained);
```

Find the equation of the tangent plane at $\theta=0, \phi=\pi / 4$. [Before computing, use the figure to guess what it should be.]
[Last revised: March 13, 2012]

