Math 260, Spring 2012

Jerry L. Kazdan

$$u_x + 3u_y = 0$$

This example is similar to Problem Set 7 # 3a).

EXAMPLE: Find a function u(x, y) that satisfies $u_x + 3u_y = 0$ with $u(0, y) = 1 + e^{2y}$.

SOLUTION: The differential equation can be written $\nabla u \cdot V = 0$ where V = (1, 3). It means that at every point the directional derivative in the direction of V is 0 so u(x, y) is constant along these parallel straight lines, which have the form y = 3x + C. Given a point (x, y)one computes y - 3x to determine C, that is, which line you are on.

Thus the solution u(x, y) = h(y - 3x) for some as yet unknown function h(s). Now we use the initial condition $u(0, y) = 1 + e^{2y}$. It gives us

$$1 + e^{2y} = u(0, y) = h(y).$$

Consequently $u(x,y) = 1 + e^{2(y-3x)}$.

[Last revised: February 28, 2012]