$$
u_{x}+3 u_{y}=0
$$

This example is similar to Problem Set 7 \# 3a).
Example: Find a function $u(x, y)$ that satisfies $u_{x}+3 u_{y}=0$ with $u(0, y)=1+e^{2 y}$.
Solution:The differential equation can be written $\nabla u \cdot V=0$ where $V=(1,3)$. It means that at every point the directional derivative in the direction of V is 0 so $u(x, y)$ is constant along these parallel straight lines, which have the form $y=3 x+C$. Given a point (x, y) one computes $y-3 x$ to determine C, that is, which line you are on.
Thus the solution $u(x, y)=h(y-3 x)$ for some as yet unknown function $h(s)$. Now we use the initial condition $u(0, y)=1+e^{2 y}$. It gives us

$$
1+e^{2 y}=u(0, y)=h(y) .
$$

Consequently $u(x, y)=1+e^{2(y-3 x)}$.
[Last revised: February 28, 2012]

