Linear Maps from \mathbb{R}^{2} to \mathbb{R}^{3}

As an exercise, which I hope you will (soon) realize is entirely routine, we will show that a linear map $F(X)=Y$ from \mathbb{R}^{2} to \mathbb{R}^{3} must just be three linear high school equations in two variables:

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}=y_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=y_{2} \tag{1}\\
& a_{31} x_{1}+a_{32} x_{2}=y_{3}
\end{align*}
$$

Linearity means for any vectors U and V in R^{2} and any scalars c

$$
F(U+V)=F(U)+F(V) \quad \text { and } \quad F(c U)=c F(U)
$$

Idea: write $X:=\left(x_{2}, x_{2}\right) \in \mathbb{R}^{2}$ as

$$
X=x_{1}(1,0)+x_{2}(0,1)=x_{1} e_{1}+x_{2} e_{2}, \quad \text { where } \quad e_{1}:=(1,0), \quad e_{2}:=(0,1)
$$

(physicists often write e_{1} as \mathbf{i} and e_{2} as \mathbf{j} but using this notation in higher dimensions one quickly runs out of letters).
Then, by the two linearity properties

$$
\begin{aligned}
Y=F(X) & =F\left(x_{1} e_{1}+x_{2} e_{2}\right) \\
& =F\left(x_{1} e_{1}\right)+F\left(x_{2} e_{2}\right) \\
& =x_{1} F\left(e_{1}\right)+x_{2} F\left(e_{2}\right) .
\end{aligned}
$$

But $F\left(e_{1}\right)$ and $F\left(e_{2}\right)$ are just specific vectors in \mathbb{R}^{3} so this last equation is exactly the desired (1) with

$$
F\left(e_{1}\right)=\left(\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right) \quad \text { and } \quad F\left(e_{2}\right)=\left(\begin{array}{l}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right) .
$$

Collecting the ingredients we have found that

$$
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=Y=F(x)=x_{1}\left(\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right)+x_{2}\left(\begin{array}{l}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right)=\left(\begin{array}{l}
x_{1} a_{11}+x_{2} a_{12} \\
x_{1} a_{21}+x_{2} a_{22} \\
x_{1} a_{31}+x_{2} a_{32}
\end{array}\right)
$$

as claimed in(1).
[Last revised: January 13, 2012]

