Area of tthe Sphere in \mathbb{R}^{n}

Let A_{n-1} denote the "area" of the unit $n-1$ dimensional sphere S^{n-1} in \mathbb{R}^{n}. We seek an inductive formula for A_{n-1} using the observation that

$$
\begin{equation*}
\pi^{n / 2}=\left(\int_{\mathbb{R}} e^{-t^{2}} d t\right)^{n}=\iint_{R^{n}} e^{-r^{2}} r^{n-1} d r d A_{n-1}=A_{n-1} J_{n} \tag{1}
\end{equation*}
$$

where

$$
J_{n}:=\int_{0}^{\infty} e^{-r^{2}} r^{n-1} d r
$$

Integrating this by parts with $u=r^{n-2}$ and $d v=e^{-r^{2}} r d r$ we find

$$
\begin{equation*}
J_{n}=\frac{n-2}{2} J_{n-2} . \tag{2}
\end{equation*}
$$

But from (1), replacing n by $n-2$ we have

$$
\begin{equation*}
\pi^{(n-2) / 2}=A_{n-3} J_{n-2} \tag{3}
\end{equation*}
$$

Dividing (1) by (3) and using equation (2)

$$
\pi=\frac{A_{n-1} J_{n}}{A_{n-3} J_{n-2}}=\frac{n-2}{2} \frac{A_{n-1}}{A_{n-3}} .
$$

Thus,

$$
A_{n}=\frac{2 \pi}{n-1} A_{n-2}
$$

Now inductively use $A_{1}=2 \pi$ and $A_{2}=4 \pi$ to compute A_{3} etc.
REMARK: If $n \geq 8$ then $\frac{2 \pi}{n-1}<1$, so it is clear that $\lim _{n \rightarrow \infty} A_{n}=0$.
To compute the volume $V_{n}(R)$ of the ball of radius R, use that

$$
\frac{d V_{n}(R)}{d R}=A_{n-1}(R)=R^{n-1} A_{n-1} .
$$

[Last revised: April 23, 2012]

