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k{se) ® 2l ds + k() \m. “ zz ds

8y
= io(£n) (k(s0) — K(0)), s < & < L.
Since the sum of the left-hand members is zero, these equations
give

.\M Lzt ds

(22(s) — 22(£2)) (£ (0) — K(s0)) = O,
which is a contradietion, because
auﬁmuv - za(te) < 0, wnev — k(s > 0.

1t follows that there is at least one more vertex on . Since the
relative extrema occur in pairs, there are at least four vertices
and the theorem is proved.

At a vertex we have k' = 0. Hence, we can also say that on-a
simple closed convex curve there are at least four points at which

E=0.
The four-vertex theorem is also true for simple closed noncenvex

plane curves; see:

1. 8. B. Jackson, “Vertices for plane curves,” Bulletin of the Ameri-
con Mathematical Soctety 50 (1944), pp. 564-578.

9. L. Vietoris, “Ein einfacher Beweis des Vierscheitelsatzes der
ebenen Kurven,”’ Archiv der Mathematik 3 (1952), pp. 304-306.

For further reading, see:
1. P. Scherk, “The four-vertex theorem,” Proceedings of the First
Canadian Mathematical Congress. Montreal: 1945, pp. 97-102.

3. ISOPERIMETRIC INEQUALITY
FOR PLANE CURVES

The theorem can be stated as follows.
TuzoreM: Among all simple closed curves having o given length

the ecircle bounds the largest area. In other words, 3f L 1s the length.

of a simple closed curve C, and A is the areq it bounds, then
¥)) P —4xdA 2 0.

Moreover, the equality sign holds only when C s a circle.

(8) Taol8) = — V2 — a2(s), 0
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Many Eoowm have been given of this theorem, differing in degree
of elegance and in the range of curves under consideration—that
is, whether differentiability or con-
vexity is supposed. We shall give
two proofs, the work of E. Schmidt
(1939) and A. Hurwitz (1902), re-
spectively.

Schmidt's Proof: We enclose €' be-
tween two parallel lines, ¢ and ¢, such
that € lies hetween g and ¢* and is
tangent to them at the points P and Q,
respectively. Welet s = 0, 8 being the
parameters of P and @, and construct
a circle T tangent to g and ¢’ at P and
Q, respectively. Denote its radius by
r and take its center to be the origin
of a coordinate system. Let X(s) =
(x1(s), x2(s)) be the position vector
Fia. 3 of €, so that (2:(0), 2(0)) = (m(L),
25(L)). As the position vector of T we
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._ take (Z1(s), 22(s)), such that

Zu(s) = ls),
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Umﬂo&m by 4 the area bounded by C. Now the mwmm bounded by a
¢losed curve can be expressed by the line integral

L
m.".\ Txh ds = — E ! — 1 fE ;
o T o Taids = § \H‘v (z1xz — x921) ds.

Applying this to our two curves € and T, we get

L
A H.\My 173 ds

I
Ad=m= Ih Ty ds = I\ohm%m%.

Adding these two equations, we have
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A st = \N\ (orzh — Tal) ds \oh a\@_am — Tpri)tds
© < ['VETDET T & ds

hh»\em.vmw%nhﬁ

Since the geometric mean of two positive numbers is less than or
equal to their arithmetic mean, it follows that

VAV < 44 + o) S i,

which gives, after squaring and cancellation of 7%, the inequality
in Equation (7).

Suppose now that the equality sign in Equation (7) holds; then
A and =2 have the same geometric and arithmetic mean, so that
A = =% and L = 2xr. The direction of the lines ¢ and g’ being
arbitrary, this means that ¢ has the same “width” in all direc-
tions. Moreover, we must have the equality sign everywhere in
Equation (9). It follows, in particular, that

(waxh — T1)? = (a1 + 73) (21" + 22,

which gives
Vi +
Va2 + zf?

=%

x]

= =7,

From the first equality in Equation (9), the factor of propor-
tionality is seen to be r, that is,

Ty = 28, Fy = —rai,
which remains true when we interchange z; and x5, so that
Ty = TTL.
Therefore, we have
z7 -+ 2k = 1,

which means that C is a cirele.

Hurwitz’s proof makes use of the theory of Fourier series. We

shall first prove the lemma of Wirtinger.
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Lamma: Let f(t) be a continuous periodic function of period 2z,

 possessing a continuous derivative Fo. I .\ > f@) dt = 0, then
a L

. 2x L
(10) b Feraz [T

Moreover, the equality sign holds if and only if

(11) ft) =acost 4+ bsint.

Proof: To prove the lemma,

of f{t) be we let the Fourier series expansion

J ~ W -+ amh (@n cos nt 4 b, sin nt).

. Sinee f/(t) is continuous, its

X Fourier series i
differentiation term by term, can be obiained by

and we have

(8 )LsMH (nb, cos nt — na, sin ni).
~Bince

2r
. o SO dt = may,
it follows from ; _
e got our hypothesis that a, = 0. By Parsevals £ ormuls,
. A -
o f®de= T (al + b)),

n=1

2 il
1 wrd = 3 niad + b3,

Rl

2r Iy r bt
o @ = [Trerd = 3 @ — 1)

n=1

i @ﬁ ’

i 1. Th = .
hich proves the lemma. erefore, .w.@ feost bising,

+ b2,

. prove the ine
we agsume, mou.. simplicity, that I, =

\N.a .,&@‘ ds = Q.

quality in Equation
2w, and that
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is, with either no tangent or a tangent of higher contact) if it is the

.. image of a point of zero curvature of C. Clearly the total curvature
- of C'is equal to the length of I.

Fenchel’s theorem concerns the total curvature.

The latter means that the center of gravity lies on the .aﬂmw.ﬁ. a
condition which can always be achieved by a proper &posm of the
coordinate system. The length and the area are given by the

e .l el d Tuaeorem: The total curvature of a closed space curve C is greater
2r = |, (x2 + x3%) ds, and A = b zxz ds.

than, or equal to, 2. It is equal to 2« if and only if C is @ plane

: i COnvex curve.
From these two equations we get

0 \ 2 e de _ The following proof of this theorem was found independently by
2r — 4) = |, (xi® — z1) ds + .\r (1 — 22)* ds. B. Segre (Bolletino della Unione Matematica Ttaliana 13 (1934),
279-283), and by H. Rutishauser and H. Samelson (Comptes Ren-
dus Hebdomadaires des Séances de 'Académie des Sciences 227
(1948), 7565-757). See also W. Fenchel, Bulletin of the American

Mathematical Society 57 (1951), 44-54. The proof depends on the
“following lemma:

The first integral is greater than, or equal to, 0 by our lemma and
the second integral is clearly greater ﬁwmu.“ or equal to, 0. Hence,
A < =, which is our isoperimetric inequality.
The equality sign holds only when
. ;

e BT . Lemma: Let T be a closed rectifiable curve on the unit sphere, with
dength I < 2m. There exists a point m on the sphere such that the
spherical distance mz < L/4 for all poinis z of T. If T is of length
2 but vs not the union of two great semicircular arcs, there exists a
point m such that ma < =/2 for all z of T

We use the notation ab to denote the spherical distance of two
points, @ and b. If ab < m, their midpoint m is the point defined
by the eonditions am = bm = 4ab. Let z be a point such that
mz £ jr. Then 2mz < az + bz. In fact, let &’ be the symmetry
of z relative to m. Then,

ra

which gives
x1 = aeos s + bsins, 2, = asins — bcos s + ¢

Thus, € is a circle.
For further reading, see: _
idt, “ i i imetrischen Eigenschaft der
1. E. Schmidt, “Beweis der isoperime ! .
Kugel im hyperbolischen und sphiirischen Raum jeder Dimen-
sionenzahl,” Math. Zeit. 49 (1943), pp- 1-109.

“E —_— —_— —
4, TOTAL CURVATURE OF A SPACE CURYV =3b, Zz=27m-+ mz="2mz.

The total curvature of a closed space curve C of rﬁmﬂr L mm.
defined by the integral

(12) w= [y Bl

where k(s) is the eurvature. For a space curve, only |k(s)| is

mmmwwwwmm C is oriented. Through the origin O of our mcmomm s%
draw vectors of length 1 parallel to the tangent <mo8nm o %
Their end-points deseribe a closed curve ﬁ on gm. EE. mm E.Mw_ .
be ealled the tangent indicatriz of C. A point of T' 18 sInguiar (tha

we use the triangle inequality, it follows that
13) 2mz = ¥z £ 70+ ax = az + ba,

5 10 be proved.

Lemma Proof: To prove the first part of the lemma, we take two
points, @ and b, on T which divide the curve into two equal arcs.
Then ab < =, and we denote the midpoint by m. Let z be a point

-such that 2mz < . Such points exist—for example, the
poitit @, Then we have
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%z < ba,

where az and bz are respectively the arc lengths along T. From
Equation (13), it follows that

—— ~~
ar = az,

@=L

omz < az + bz =

2

Hence, the function f(z) = mz, € T, iseither = v/20r = L/4 <
/2. Since T is connected and f(z) is a continuous funection in T,
the range of the function f(z) is connected in the interval (0, 7).
Therefore, we have f(z) = ma £ L/4.

Consider next the case that T is of length 2#. If T contains a
pair of antipodal points, then, being of length 2, it must be the
union of two great semicircular arcs. Suppose that there is a pair
of points, @ and b, which bisect T such that

ar +0rx <7

for all z € T. Again, let m denote the midpoint of @ and b. If |

f(z) = mz < =, we have, from Equation (13),
omz = ax + br < m,
which means that f(z) omits the value =/2. Since its range is con-

nected and since fa) < /2, we have f(z) < r/2 for all 2 € T.

Thus the lemma is true in this case.

Tt remains to consider the case that T eontains no pair of antip-
odal points, and that for any pair of points a and b which bisect T,

there is a point € T with
ot + bz = .

An elementary geometrical argument, which we leave to the reader,

will show that this is impossible. Thus, the lemma is proved.

Theorem Proof: To prove Fenchel’s theorem, we take a fixed:

unit vector 4 and put
g(s) = AX(s),

where the right-hand side denotes the scalar product of the vectors
A and X(s). The function g{s) is continuous on ¢ and hence must

have a maximum and & minimum, Since g’(s) exists, we have
at such an extremum s, .
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7' (%) = AX'(s) = 0.

. Thus A, as a point on the unit sphere, has a distance =/2 from at
..Hmmm_u two ﬁmE&m of the tangent indicatrix. Since A4 is arbitra
‘the tangent indicatrix is met by every great circle. It follows H.HMWHM
the lemma that its length is greater than, or equal to, 2«
- Suppose n.mﬁ that the tangent indicatrix T is of Hmwwﬂh 2%. B
: .,o,E, lemma, it must be the union of two great semicircular .Ed%
It follows that C itself is the union of two plane arcs. Since € rmm

a tangent everywhere, it must be a plan
a t € curve,
oriented that its rotation index ’ Suppose € be so

1
. 5 ,\H.ub kds = 0.
Then we have

L
0= [k — 8 do =25 — [“has

80 that the Huogaon index is either 0 or 1. To a given vector in the
%Hmum there is @m.umzﬁ to it a tangent ¢ of C such that ¢ lies to the
eft of ¢. Then ¢ is parallel to the vector in the same sense, and at

ts point of contact we have & = 0, implying that .% -0 Eds = 2r,

Since \a lk}ds = 2=, there is no point with % < 0, and \. Eds = 2r,

From the remark i
e ark at the end of Section 1, we conclude that € is

~ As a corollary we have the following theorem.

- :CoroLpary: If |k(s)| <
length L = 2zR.

. We have

L= h%w ﬁms_% =B ["[t] ds = 20R.

~Tenchel’s theorem holds also for i
sectionally smooth .
the total curvature of such a curve we define curves. As

L
p= Ik ds + 3 a

where the a; are the angles at the vertices. In other words, in this

1/R jor a closed space curve C, C has a




