
Math 260, Spring 2012 Jerry L. Kazdan

Representing Symmetries by Matrices

If order to understand and work with the symmetries of an object (the symmetries of a
square is a simple example), one would like a way to compute, not just wave your hands.
For an object with complicated symmetries, this is essential. The standard technique goes
back to Descartes’ introduction of coordinates in geometry. Say one has two copies of the
plane, the first with coordinates (x1, x2), the second with coordinates (y1, y2). Then the
high school equations

x1 + 2x2 = y1 (1)

x1 − x2 = y2 (2)

can be thought of as a mapping from the (x1, x2) plane to the (y1, y2) plane. For instance,
if x1 = 1 and x2 = −1, then y1 = −1 and y2 = 2. Thus the point (1, −1) is mapped to
the point (−1, 2).

Similarly, the equations

0x1 − 2x2 = y1 (3)

x1 + 0x2 = y2 (4)

defines a map that takes (1, 0) to (0, 1) and (0, 1) to (−2, 0). It can be thought of as a
vertical stretching by a factor of 2 followed by a counter-clockwise rotation by 90 degrees.
Here is a picture of what this map does to the letter F : it maps the light F to the dark F .

The essence of equations (1)-(2) and (3)-(4) is in the coefficients of x1 and x2 and is
captured concisely in the respective matrices

A =

(

1 2
1 −1

)

and B =

(

0 −2
1 0

)

.

Similarly, the equations below define a counterclockwise rotation, R , by 90

−x2 = y1

x1 = y2

with matrix R =

(

0 −1
1 0

)

The following equations define a reflection, S , across the vertical axis:
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−x1 = y1

x2 = y2

with matrix S =

(

−1 0
0 1

)

so you reverse the sign of the first coordinate and leave the second coordinate unchanged.

Exercise Geometrically interpret the effect of the matrix C := ( 1 0
0 2

).
Show that B = RC and interpret this geometrically as the mapping C followed by the
mapping R .

Example To describe the symmetries of a square ABCD , introduce coordinates so that
the center of the square is at the origin. One obvious symmetry is
the 90 degree rotation R described above. Then R2 (just repeat
R) is the rotations by 180 degrees. Also R3 is the rotation by 270
degrees – which is clearly equivalent to a clockwise rotation by 90
degrees, which we write as R−1 = R3 . A rotation by 360 degrees
is the same as no rotation, so R4 is the identity matrix: R4 = I .
Observe R−1R = R3R = R4 = I , as one should want.
Another evident symmetry is the reflection, S , across the vertical line
PQ . Clearly reflecting twice brings you back home, so S2 = I .
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We can use a sequence of these symmetries, such as SR (a rotation R followed by a
reflection S ), to get the complete group of symmetries of the square. The complete list of
elements of this group are:

I, R, R2, R3, S, SR, SR2, SR3. (5)

Note that by a computation, S2 = I , RS = SR3 , R2S = SR2 , and R3S = SR so the
above list contains all possible combinations of products of R ’s and S ’s. Since SR 6= RS ,
this group of symmetries is not commutative.

There are some additional evident symmetries of the square, for example the reflection T

across the horizontal line MN . Is this missing from our list (5)? If you sketch the figures,
you will see that you can achieve T by first using the reflection S followed by R2 . Thus,
T = R2S . Similarly, the reflection across the diagonal DB is equivalent to RS . The list
(5) really does contain all the symmetries of the square.
Exercise:

a) Use RS = SR3 to show that the maps RSR , R2S , and RSR−1 are in the list (5).

b) Prove that the list (5) really does contain all the symmetries of the square. I suggest
beginning with the special case where the vertex A is fixed. What are the possible
adjacent vertices? A key ingredient is that the symmetries of the square are rigid

motions, that is, they preserve distances between points, so no stretching or shrinking
is allowed.
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These matrices (5) give a representation of the group of symmetries of a square. Their value
is they are very specific and can be used for technical computations. While the machinery
is excessive for something as simple as the symmetries of a square, it is vital to understand
the symmetries of more complicated objects — such as sub-atomic particles. This is the
subject of group representation theory.
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