Matn £10 Jerry L. Kazdan

Vectors — and an Application to Least Squares

This brief review of vectors assumes you have seen the baspegies of vectors
previously.

We can write a point irR" as X = (x1,...,X,). This point is often called &ector. Fre-
guently it is useful to think of it as an arrow pointing frometlorigin to the point. Thus,
in the planeR?, X = (1,—2) can be thought of as an arrow from the origin to the point
(17 _2>

Algebraic Properties
Alg-1. ADDITION: If Y = (y1,...,¥n), thenX+Y = (X1 +VY1,...,Xn+Yn)-
Example In R4, (1,2,-2,0)+(—1,2,3,4) = (0,4,1,4).
Alg-2. MULTIPLICATION BY A CONSTANT: CX = (CX,...,CX).
Example In R4, if X = (1,2,-2,0), then—3X = (—3,-6,6,0).
Alg-3. DISTRIBUTIVE PROPERTY C(X +Y) =cX+cY. This is obvious if one writes it
out using components. For instance RA:

C(X+Y) =c(X1+Y1,X2+Y2) = (CX1 + CY1,CX + Cy2) = (CX1,CX2) + (CY1,C¥2) = CX+CY.

Length and Inner Product

NIP-1. ||X]|| := /X2 + - +x2 is thedistancefrom X to the origin. We will also refer to

|X]| as thelengthor normof X. Similarly || X —Y/|| is thedistance between X and.Y
Note that||X|| = 0 if and only if X = 0, and also that for any constanive have||CB|| =
[cf[[X]]. Thus,[|=2X]| = [|2X]| = 2[|IX].

LIP-2. Theinner productof vectorsX andY in R" is, by definition,
(X,Y) 1= Xy1 +XaY2 + - + XnYn. 1)

This is also called thdot productand writtenX - Y. The inner product of two vectors is a
numbernotanother vector. In particular, we have the vital identj¥/||2 = (X, X) relating
the inner product and norm. For added clarity, it is somesimgeful to write the inner
product inR" as (X, Y)gn.

Example In R*, if X = (1,2,-2,0) andY = (—1,2,3,4), then (X,Y) = (1)(-1) +
(2)(2)+(=2)(3) + (0)(4) = 3.

HIP-3. ALGEBRAIC PROPERTIES OF THE INNER PRODUCTThe following are obvious
from the above definition ofX, Y):

). (X,X)>0,with (X,X)=0 if(andonlyif) X=0,

iN). (X+Y,W)=(X,W)+(Y,W),



iiM). (cX,Y)=c(X,Y),
iv). (Y, X) = (X,Y).
These four properties can be viewed asdak®msfor an inner product of real vectors.

REMARK: If one works with vectorZ := (z, 2, ..., 7,), havingcomplex numbers; zas elements,
then the definition of the inner product must be modified sificea complex numbee .= x+ iy
we have|z? = x> +y? = zz, wherez:= x— iy is thecomplex conjugatef z. Using this we define
theHermitian inner producby

(W, Z) :=W1Z3 +WoZo + - - - + WnZn. (2)

(note: many people put the complex conjugate on the first,teyminstead of thez;). The pur-
pose is to insure that the fundamental propdi&j|? = (Z, Z) > 0 still holds. Note, however, that
the symmetry propertyY, X) = (X,Y) is nowreplacedby (Z, W) = (W, Z), and hence, as the
following proof shows,(\W, cZ) = c(W, Z):

PROOF (W, cZ) = (cZ,W) = (cZ,W) =T(Z, W) =T(W, Z)).

For complex vectors or matrices oakvaysuses a Hermitian inner prodect.

IP-4. GEOMETRIC INTERPRETATION The definition (1) of the inner product is easy to
compute. However, it is not at all obvious that the inner piids useful — until one
interprets it geometrically:

XY = 1IX/[[Y]| cos8, 3)

where® is the angle betweeK andY . Since co6—8) =
cosB, the sense in which we measure the angle does not
matter. 0

Y

To prove (3), we can restrict our attention to the two dimenal plane containing and

Y. Thus, we need consider only vectorsRA. Assume we are not in the trivial case where
X orY are zero. Letn andf3 be the angles that = (x1,x2) andY = (y1,y2) make with
the horizontal axis, s@ =3 —a. Then

X1 = ||X]| cosa and X = ||Y|sina.
Similarly, y; = ||Y||cosB andy, = ||Y||sinf3. Therefore

(X,Y) =xay1+X2y2 = || X||||Y || (cosa cosB + sina sinf3)
=[IX[[[Y||cogB—a) = [|X]|[[Y]| cosb.
This is what we wanted. Alternatively, the equivalence ¢fgid (3) can be seen as just a
restatement of the law of cosines from trigonometry.

IP-5. GEOMETRIC CONSEQUENCE X andY are perpendicular if and only ifX,Y) =0,
since this means the angbebetween them is 90 degrees so @es0. We often use the
word orthogonalas a synonym foperpendicular
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Example The vectorsX = (1,2,4) and (0,—2,1) are orthogonal, sincéX,Y) =0—4+
4=0.

Example The straight line—x+ 3y = 0 through the origin N

can be written agN, X) =0, whereN = (—1,3) and X =

(x,y) is a point on the line. Thus we can interpret this line <NX>=0
as being the points perpendicular to the vedtorThe line
—X+3y =7 is parallel to the line-x+ 3y =0, except that it
does not pass through the origin. This same vehlltas perpendicular to it. 1§Xp is a point
on theline(N, X) = ¢, so(N, Xp) = ¢, then we can rewrite its equation &4, X — Xg) =0,
showing analytically thalN is perpendicular tX — Xgp.

0

Many formulas involving||X|| are simplest if one rewrites them immediately in terms of
the inner product. The following example uses this approach

Example [PYTHAGOREAN THEOREM If X andY are orthogonal vectors, then the
Pythagorean law holds:

XY = [1X]12 4 (1Y)
SinceX andY are orthogonal, thekX, Y) = (Y, X) =0, so, as asserted

IX+Y[[2=(X+Y, X+Y)
= (X, X) + (X, Y) + (Y, X) +(Y,Y)
S ENR

since if a vectoiZ is orthogonal to all other vectors, in particular, it is atonal to itself.
Thus||Z||?=(Z,Z) =0 soZ =0.

REMARK: Observe that the zero vector is orthogonal to all vectotds the only such
vector since if(Z,V) = 0 for all vectorsV, thenZ = 0. To prove this, since we can pick
any vector forV, this is true in particular iV = Z. But then||Z||> = (Z,Z) = 0 so the
only possibility isZ = 0.

IP-6. MATRICES AND THE INNER PRODUCT If A is ak x n matrix (k rows, n columns

SoA: R" — RK), we want to computéAX, Y)« for vectorsX € R" andY < R¥ in order

to introduce the concept of thaljoint of a matrix.

Lete; =(1,0,0,...,0),...,e,,=(0,0,...,0,1), be the usual standard basis vector&ih

ande; = (1,0,0,...,0),....&:=(0,...,0,1) be the usual basis vectorsR¥. Recall that
in matrix notation, we usually think of vectors eslumn vectorslf A= (g;j) , itis easy to
see thatAg is the first column ofA, Ae, the second column o&and so on. For instance

a;1 a2 ... an\ (0 a2
a1 axp ... agn 1 a2

Ae = : : .. : | T : ’ (4)
Al A2 ... n 0 A
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In words, the image o is the second column @&, just as asserted.
Using this observation it is clear thaf\ey, £1)px = a2. Similarly,

(Aa, £j)rk = aji. (5)
We use this to define tredjointof the matrixA, written A*. It is defined by requiring that
(AX,Y) = (X, A"Y) or, more formally, (AX,Y)gk= (X, A"Y)gn. (6)

for all vectorsX € R" andY e Rk,

The formula (6) looks abstract but is easy to use — althoughiatstage it is not at all
evident that it is useful. For the moment, wriBe= A", so (6) saysS(AX,Y) = (X, BY).
Say the elements dd are bjj. We would like to compute théjj’s in terms of the known
elementsa;; of A. From (4) applied td, we know thatBe; is the first column oB. Thus
(€2, Be1) = bp1. But the definition we haveéX, BY) = (X,Y) so

bo1 = (e, Be1) = (Aep, €1) = ago.

In the same waybjj = aji foralli =1,2,...n, j =1,2,.. k. In other words, the first row
of B= A" is simply the first column oA, etc. Thus we interchange the rows and columns
of A to getA*. For this reasom\" is often called théransposef A and writtenAT .

EXAMPLE
ai; ag1
. 11 A a
if A= (9 92 93 , then A =AT = ai;p a» ). (7)
ap1 az2 a3
aiz ags

A square matrixA is calledself adjointor symmetriaf A= A*. Itis calledskew-adjoint
or anti-symmetriégf A= —A*. An obvious property is thadA™ = (A*)* = A.
As an example, let’s obtain the properB)* = B*A*. We begin using the definition (6)
applied toAB:

((AB)*X,Y) = (X, (AB)Y). (8)

But (AB)Y = A(BY) so
(X, (AB)Y) = (X, A(BY)) = (A*X, BY) = (B*(A*X),Y) = ((B*A")X,Y).  (9)

Comparing (8) and (9) we find thaAB)* = B*A*.

One consequence is thAtA is a symmetric matrix, even ifA is not a square matrix, be-
cause(A*A)* = A*A™ = A*A. In particularA*A is a square matrix. SimilarbpA* is a sym-
metric matrix. For many applications it is useful to notibat (A*AX, X) = (AX, AX) =
|AX]||? > 0 forall X.



X1

REMARK: If, as is usual, we think of a vectof := | : | as a column vector, then we
Xn

can treat it as a ¥ n matrix and observe the inner produgt, Y) = XY, which is often

useful. Also(X, AY) = XTAY so computing inner products is now under the umbrella of
matrix multiplication. This observation is quite valuallecomputations.

Derivatives of Vectors
D-1. If X(t) = (xa(t),...,%a(t)) describes a curve iR", then itsderivativeis

X =20 = o40)... %),

One can think of this as theelocity vector It is tangent to the curve.

Example If X(t) = (2cod,2sint), then this curve is a circle of radius 2, traversed counter-
clockwise. Its velocity isX(t) = (—2sint,2cog) and itsspeed||X'(t)|| = 2. For instance,
X'(0) = (0,2) is the tangent vector & (0) = (2,0). The curveY(t) = (2cos3,2sin3)
also describes the motion of a particle around a circle atiad, but in this case the speed
is [Y'(t)]| =6

D-2. DERIVATIVE OF THE INNER PRODUCT If X(t) andY (t) are two curves, then

d o dX(t) dy(t)
X0, Y () = (=5 Y(O) + (X(1), =5 (10)

or, more briefly,(X,Y) = (X", Y) + (X, Y’).
To prove this one simply uses the rule for the derivative ofapct of functions. Thus

%(X(t),Y(t» = %(X1y1+x2y2+...)
= (Xpy1 +X1Yh) + (XoY2 + XoYo) + - - -
= (XqY1+XoY2 + -+ ) + (Xayp +XoYo + -+ )
= (X, Y) 4+ (X, Y.

Example
d

d
aHX(t)H2 = g (X (1), X(©) = 2(X(t), X'(t))- (11)
As a special case, if a particle moves at a constant distarficen the origin, ||X(t)|| = c,

then 0= dc?/dt = d||X(t)]|?/dt = 2(X(t), X'(t)). In particular, if a particle moves on a
circle or a sphere, then the position vecft) is always perpendicular to the velocity
X'(t). This also shows that the tangent to a circké(t), is perpendicular to the radius

vector, X(t).



Orthogonal Projections

Proj-1. ORTHOGONAL PROJECTION ONTO A LINE Let X andY be given vectors. We
would like to write Y in the formY = cX+V, whereV is perpendicular toX. Then the
vectorcX is theorthogonal projection of Y in the line determined by the vect.

How can we find the constactand the vecto¥ ? We use the only fact we know: thdtis
supposed to be perpendicularXa Thus we take the inner Y
product ofY = cX+V with X and conclude thatX,Y) = |
c(X, X), that is

X,Y)

X2

Now that we knowc, we can simply defin& by the obvious formul&/ =Y —cX.

At first this may seem circular. To convince your self thasthiorks, letX = (1,1), and
Y = (2,3). Then compute andV and draw a sketch showing, Y, cX, andV .

SincecX LV, we can use the Pythagorean Theorem to conclude that

V]I = 2 IIX[IZ+ V|2 = e[ X2

From this, using the explicit value @ffound above we conclude that

2
viz= (£S5 ) e

and obtain th&chwarz inequality
YO < XY (12)
Notice that this was done without trigonometry. It used othlg properties of the inner

product.

Proj-2. ORTHOGONAL PROJECTION INTO A SUBSPACE If a linear space has an inner
product andS is a subspace of it, we can discuss the orthogonal projecfiarvector into
that subspace. Given a vectdr if we can write

Y=U+V,

whereU isin SandV is perpendicular té, then we call the projection ofY into Sand
V the projection ofY perpendicular taS. The notationd = PsY, V = PsY is frequently
used for this projectiofty .



Y
2

By the Pythagorean theorem
IYIZ=UIP+IVIZ (U =P, V=PsY).

It is easy to show thahe projection BY is closer to Y than any other pointin B other

words,
Y = PsY|| < Y = X|| forall X in S.

To see this, given anX € Swrite Y — X = (Y — PsY) + (PsY — X) and observe that —
PsY is perpendicular td&5 while PsY and X, and hencePsY — X are inS. Thus by the
Pythagorean Theorem

IY =X[#= Y = PsY|[*+[[PsY —X]|* > [|Y —PsY||2.

This is what we asserted.

Problems on Vectors

1. a) For which values of the constamtaind b are the vectort) = (1+a, —2b,4) and
V =(2,1,—1) perpendicular?

b) For which values of the constaat andb is the above vectadd , perpendicular to
bothV and the vectoW = (1,1,0)?

2. LetX = (3,4,0) andY = (1,—,1).

a) Write the vectory in the formY = cX+V, whereV is orthogonal toX. Thus,
you need to find the constantand the vectoV .

b) Compute||X]|, ||Y]|, and||V|| and verify the Pythagorean relation

V(I = leX|f?+ V]2
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. [CONVERSE OF THEPYTHAGOREAN THEOREM If X andY are real vectors with the
property that the Pythagorean law hold||2+ ||Y||? = || X +Y||?, thenX andY are
orthogonal.

. If a vector X is written asX = aU + bV, whereU andV are non-zero orthogonal
vectors, show thaa = (X,U)/||U]||? andb = (X, V)/||V|?.

. The origin and the vectorX, Y, and X +Y define a parallelogram whose diagonals
have lengthX +Y and X —Y . Prove theparallelogram law

IXHYI2 4 IX = YIJ2 = 2] X2 + 2] Y|

This states that in a parallelogram, the sum of the squatée ééngths of the diagonals
equals the sum of the squares of the four sides.

. a) Find the distance from the straight line-34y = 10 to the origin.

b) Find the distance from the straight lim&-+ by = c to the origin.

c) Find the distance between the parallel lises- by = ¢ andax+ by =y.
d) Find the distance from the plame+ by+ cz=d to the origin.

. The equation of a straight line iR3 can be written a(t) = Xg+tV, —o0 < t < o,
where Xy is a point on the line an¥ is a vector along the line (in a physical setting,
V might be thevelocityvector).

a) Find the distance from this line to the origin.

b) If Y(S)=Yo+sSW, —w < s< =, is another straight line, find the distance between
these straight lines.

. a) If X andY are real vectors, show that
1
X, Y) = Z (IX+Y 2= X =Y]).

This formula is the simplest way to recover properties of itiveer product from

the norm.
b) As an application, show that if a square mafhas the property that it preserves
length, so||RX|| = ||X|| for every vectorX, then it preserves the inner product,

that is, (RX, RY) = (X, Y) for all vectorsX andY..



9. If one uses the complex inner product (2), show that theeitgsA* are the transpose
conjugate A" = (ay), of the elements oA = (ay).

10. a) If a certain matribxC satisfies(X,CY) = 0 for all vectorsX andY, show that

C=0.
b) If the matricesA and B satisfy (X, AY) = (X, BY) for all vectorsX andY, show
that A= B.

11. a) Give an example of ax33 anti-symmetric matrix.
b) If A is any anti-symmetric matrix, show thaX, AX) = 0 for all vectorsX.

: : : : . dX : .
12. SayX(t) is a solution of the differential equatlo%T = AX, where A is an anti-
symmetrianatrix. Show that|X(t)|| = constant.

Application to the Method of Least Squares

THE PROBLEM. Say you have done an experiment and obtained the data geiftd),
(0,-1), (1,-1), and(2,3). Based on some other evidence you believe this data should fit
a curve of the formy = a+bx2. If you substitute your datéx;,y;) into this equation you

find

a+b(—-1)%= 1
a+b(0)? =-1 (13)
a+b(1)?2 =-1
a+b(2? = 3

This system of equations mver determinedince there are more equations (four) than
unknowns (two:a and b). As is the case with almost all overdetermined systems, it i
unlikely they can be solved exactly.

We rewrite these equations in the matrix foA =W, where

11 1
10 a -1
A= 1 1| V:(b), and W= 1
1 4 3

We refer toA as thedata matrixandW as theobservation vector



Instead of the probably hopeless task of solviWg= W, we instead seek a vector that
minimizes the error (actually, the square of the error).

QV) = [|Av — w12

If we are fortunate and find an exact solution®f =W, so much the better since then
Q(V) = 0. We will find this error minimizing solution in two differérways, one using
calculus, another using projections.

Summary. The general problem we are facing is:
Given: A data matrixA and an observation vectyy,

To find: The “best solution” ofAV = W. For us, “best” means minimizing the error
QV) = [|AV W2,

SOLUTION USING CALcULUS. One approach is to use calculus to find the minimum by
taking the first derivative and setting it to zero. We will dost here only using calculus
of one variable (so we won't use partial derivatives, algjousing these gives an entirely
equivalent approach).

SayV (this is what we want to compute) gives the minimum@X) > Q(V) for all X.
We pick an arbitrary vectoZ and use the special family of vectaxgt) =V +tZ. Let

f(t) == Q(X(1) = |AX(t) —W]|.

Since Q(X(t)) > Q(V) = Q(X(0)) we know thatf(t) > f(0) so f has its minimum at
t =0. Thusf’(0) = 0. We compute this. From (11)

£/(t) = 2(AX(t) =W, AX'(1)) = 2(AX(t) — W, AZ).

In particular,
0= f'(0) =2(AV —W, AZ).

We use (6) to rewrite this a8A"(AV —W), Z) = 0. But now sinceZ can beanyvector, by
the REMARK at the end of propertip-5 above, we see that the desirddmust satisfy

A*(AV —W) =0,

that is,
AFAV = A"W | (24)

These are the desired equations to complte As observed above, the matr&‘A is
always a square matrix. The fundamental equation (14) isct#henormal equation
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Example We apply this idea to (13). Since
. (1111
A _(1 0 1 4)’

«x (4 6 wng [ 2
AA_<6 18) and AW_<12).

The normal equationd*AvV = A*W are then
4a+ 6b=2
6a+ 180 =12

Their solutionisa= —1, b= 1. Thus the desired curye= a+ bx? that best fits your data
points isy = —1+ x2.

then

SOLUTION USING PROJECTIONS As above, given a matriA and a vectolV we wantV
that minimizes the error:

QV) = [|AV —W||%.
Thus, we want to pick/ so that the vectoU := AV is as close as possible W. Notice
thatU must be in the image oA. From the discussion of projections (demj-2 above),
we want to letU be the orthogonal projection & into the image ofA.

How can we compute this? Notice tha¥ —W will then be perpendicular to the image
of A. In other words AV —W will be perpendicular to all vectors of the for&Z for any
vectorZ. Thus by (6) above

0=(AZ, AV —W) = (Z, A*(AV —W)).

But now since the right side holds fatl vectorsZ we can apply the RMARK at the end
of Ip-5 above to conclude that

ATAV = A*W. (15)
These again are thermal equationsfor V and are what we sought. Of course they are
identical to those obtained above using calculus. Althotingh may seem abstract, it is
easy to compute this explicitly.

Example Here is a standard example using the normal equations. $agrevgivenn
experimental data pointéxy, y1), (X2, ¥2),...,(Xn, Yn) @and want to find the straight line
y = a+ bx that fits this data best. How should be proceed? Ideally we teapick the
coefficientsa andb so that

atbxy = w1
atbx = V3
a+bx, = Vyn
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These aren equations for the two unknowrss b. If n> 2 itis unlikely that we can solve
them exactly. We write the above equations in matrix noteéisAvV =Y, that is,

1 x1 Y1
av=| 1 % (a): Y2 | _vy.
1 X Yn

Next we want the normal equatioAs AV = A*Y . Now

1 x4
" 1 1 --- 1 1 % n Y Xj
AA: g .
(Xl Xo .- Xn) (ZXJ zsz)
1 X

The computation oA*Y is equally straightforward so the normal equations are tquee
tions in two unknowns:

n oYX a\ [ Sy
(5w B(5)-(55) ®

These can be solved using high school algebra. The sol&ion i

y—y=m(x—X), (17)
where . ) ] ]
X== Y X, Y=o yj, and mZZ(XJ_XXXJz—B/)‘
M1 N1 8=n 3 (Xj —X)

Notice that the straight line (17) passes thro(gly). The equations (16) are particularly
simple to solve ifx =0 andy = 0. The general case is reduced to this special case by the
natural substitutionxj’= x; —X, y; =Yyj—Y. | used this to get (17).

In these and related computations it is useful to introdbeedata as vectors:

X=(X1,X2,..., %) and y=(y1,¥2,...,Y¥n)

and, in occasionally confusing notation, identify the agmx with the vectorx = (X, ...,X)
havingn equal components. We also use the “data inner product” and “data norm”

KXY S=XY1+XaY2 4. Xy X2 =X X>>

In statistics, < x— X,y —y>> is called thecovariance of x and yand write Co\X,y).
Using this notation the slope of the above lineris=<x—X,y—y>> /|x—X|2. Of special
importance is theorrelation coefficient

X=Xy -Y>
") = Ry =y
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This measures how closely the data poi(tg, y;) fit the straight line. The Schwarz in-
equality asserts that(x,y)| < 1. If r(x,y) = +1 the data lies along a straight line with
positive slope, while ifr (x,y) = —1 the data lies along a straight line with negative slope.
If r(x,y) = 0 the data forms a cloud and does not really seem to lie alopgtaaight line.
See most statistics books for a more adequate discussiog aith useful examples.

Identical methods can be used to find, for instance, the godblignomialy = a+ bx+
ox? +dx3 that best fits some data, or the plane a+bx+cy that best fits given data. The
technique of least squares is widely used in all area wheeehas experimental data. The
key feature is that the equations lbgar in the unknown coefficienta, b, etc. However,
even if the equations are not linear in the unknown coefftsien b, etc., frequently one
can find an equivalent problem to which the techniques applye following example
illustrates this.

Example Say we are givem experimental data points, y1), (X2, ¥2), ..., (Xn, Yn) and
seek an exponential curye= a€™ that best fits this data. Ideally we want to pick the
coefficientsa andb so that

adt =y,
a2 = vy,
aéjxn — yn.

These aren equations for the two unknowres b. However, they are nonlinear imso the
method of least squares does not directly apply. To get ardhis we take the (natural)
logarithm of each of these equations and obtain

a+bxy= Iny;
o+bx = Iny2

a—+bx = Inyy,

where a = Ina. These modified equations draear in the unknownsa and b, so we
can apply the method of least squares. After we krmowve can recovern simply from
a=¢".

REMARK. Say one wants to fit data to the related cupe ae’*+c. | don’t know any
way to do this using least squares, where one eventuallgsallinear system of equations
(the normal equations). For this problem it seems that ongt snlve anonlinearsystem
of equations, which is much more difficult.

Example This is similar to the previous example. Say we are gimeexperimental data
points (X1, Y1), (X2,¥2), ..., (Xn, Yn) @and seek a curve of the form= T that best
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fits this data. Ideally we want to pick the coefficieatsindb so that

axqy .
102
axo o
1+b% y2
ax,
Trog M

These aren equations for the two unknowres b. However, they are nonlinear imso the

method of least squares does not apply directly. To get ardlis we rewrite the curve
asy(1+bx?) = ax, that is,ax— bx?y = y. This equation is novinear in the unknown

coefficientsa andb. We want to pick these to solve the equations

ax —bxgyr = yi
o — by, = Yo
ax —bXyn = Yn.

with the least error. These are linear equations of the f8¥m= W, where the data matrix
is

X1 —Xeyp
2

Xo —X

Xn _X%yb

S0 we solve the normal equatioASAV = A*W as before.

Problems Using Least Squares

1. Use the Method of Least Squares to find the straightyireax+ b that best fits the
following data given by the following four point&;,y;), j =1,...,4:

(—=2,4), (—-1,3), (0,1), (2,0).
Ideally, you'd like to pick the coefficienta andb so that the four equatiore; b =

yi, ] =1,...,4 are all satisfied. Since this probably can’t be done, ons lesest
squares to find the best possilalendb.

2. Find a curve of the forny = a-+ bx+ ¢ that best fits the following data
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y|l4|11/-05/1.0|43|81|17.5

3. Find a plane of the forma = ax+ by+ c that best fits the following data

4. The water level in the North Sea is mainly determined bysthealled M2 tide, whose
period is about 12 hours. The heigH(t) thus roughly has the form

H(t) = c+asin(2mnt/12) +bcog2mt /12),

where timet is measured in hours (note §#mt /12 and co&rt /12) are periodic with
period 12 hours). Say one has the following measurements:

t (hours) 0| 2|4 6| 8]|10
H(t) (meters)| 1.0/ 1.6|1.4|0.6|0.2|0.8

Use the method of least squares with these measurementsl tinérconstants, b,
andc in H(t) for this data.

5. a). Some experimental dats, y;) is believed to fit a curve of the form

B 1+x
y= a+bx2’

where the parameters and b are to be determined from the data. The method of
least squares does not apply directly to this since the peteasa andb do not appear
linearly. Show how to find a modified equation to which the noetlof least squares
does apply.

b). Repeat part a) for the curye= a1 bx’

c). Repeat part a) for the curye= 27 bx’
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d). Repeat part a) for the curye= axX°.

- L .
e). Repeat part a) for tHegistic curve y= Tre bk Here the constarit is assumed
to be known.[If b > 0, theny converges td_ asx increases. Thus the value bfcan often

be estimated simply by eye-balling a plot of the data fordatd
f). Repeat part a) for the curve=1— e’

a+mx . .
g) Repeat part a) for the curye= b++x assuming the constant is known. [One

might find m from the data sincg tends tom for x large.]

h). Repeat part a) for the curye= 17 bsinx

. The comet Tentax, discovered only in 1968, moves withengiblar system. The fol-
lowing are observations of its positigin, 0) in a polar coordinate system with center
at the sun:

r 2.701 2.00| 1.61|1.20| 1.02
S 48 | 67 | 83 | 108 | 126

(hereB is an angle measured in degrees).

By Kepler’s first law the comet should move in a plane orbit gdshape is either an
ellipse, hyperbola, or parabola (this assumes the grami@ltinfluence of the planets
is neglected). Thus the polar coordinate®) satisfy

r= P
1—ecosd

where p and the eccentricitg are parameters describing the orbit. Use the data to es-
timate p ande by the method of least squares. Hint: Make some (simplejpirgry
manipulation so the parametegpsand e appeatinearly; then apply the method of least
squares.

. Plotting graphsThis problem concerns the straight line in the plane thatgathrough
the two points(4,0) and (0,2) (draw a sketch). This will be useful for the next prob-
lem.

a) If the horizontal axis ix and the vertical axiy, what is the equation foy as a
function of x?
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b) If the horizontal axis is log and the vertical axiy, what is the equation foy as
a function ofx?

c) If the horizontal axis is< and the vertical axis log, what is the equation foy as
a function ofx?

d) If the horizontal axis is log and the vertical axis log, what is the equation foy
as a function of?

8. For each of the seven closest planets, Kepler, using dateBruno, knew the distance
r from the planet to the sun (in million km)and the tirnfieit takes to orbit the sun (the
length in earth days of a year on that planet).

Mercury | Venus| Earth | Mars | Jupiter| Saturn| Uranus
r 60 110 | 150 | 230 | 780 | 1430 | 2870
T 90 225 | 365 | 690 | 4330 | 10750| 30650

Kepler sought a formula relatingand T. It took him a long time; he did not have
logarithms. Guided by the idea of using graphs as in the pusproblem, you can do
this fairly easily.

Make four experimental graphs of this data (as in the premuablem just above). The
goal is to hope one of these four curves looks roughly likeraigitt line. If it does,
then use least squares to find the “best” straight line — agal tie desired formula for
the relation between andT.

[Since the data is only approximate and since we anticip&&naple” answer, you
may find it appropriate to use your numerical results to leadltp a simpler formula.]

9. Let A: R" — RX be alinear map. IAA is not one-to-one, but the equatidx =y has
some solution, then it has many. Is there a “best” possitdevar? What can one say?
Think about this before reading the next paragraph.

If there is some solution oAx =y, show there is exactly one solutioa of the form

x1 = A*w for somew, so AA"w =y. Moreover of all the solutiong of Ax=y, show
thatx; is closest to the origin (in the Euclidean distance)ef{RRRK: This situation is
related to the case where whekds not onto, so there may not be a solution — but the
method of least squares gives an “best” approximation tdwisq.]

10. LetPy, Ps,..., P bek points (think of them adata) in R2 and letS be the plane
S:={XeR¥: (X,N)=c},

17



whereN # 0 is a unit vector normal to the plane ands a real constant.

This problem outlines how to find the plane tlest approximates the data poirits
the sense that it minimizes the function

k
z distancéP;,.S)

Determining this plane means findidggandc.
a) Show that for a given poirRe, then

distancéP, ) = [(P— X, N)| = |(P,N) —c]|,

whereX is any pointingS

b) Firstdo the special case where the center of rﬁass% zlj(:l P; is at the origin, so

P = 0. Show that for any, then(P, N)? = (N, PP*N). Here viewP as a column
vector soPP* is ak x k matrix.

Use this to observe that the desired plasigs determined by letting\ be an
eigenvector of the matrix

k
A=YS PP/
j
2
corresponding to it's lowest eigenvalue. Whatis this case?

c) Reduce the general case to the previous case by laffirgP; —

d) Find the equation of the linex+ by = c that, in the above sense, best fits the data
points(—1,3), (0,1), (1,-1), (2,-3).

e) LetPj:=(pj1,...,Pj3), j =1,...,k be the coordinates of thg" data point and
Zo:= (pw,-..,pPxe), £ =1,...,3 be the vector of'" coordinates. Ifeyj is thei]j
element ofA, show thata;j = (Z;, Zj). Note that this exhibit#\ as aGram matrix

f) Generalize to wher®y, P;,..., P arek points inR".
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