Directions This exam has two parts. Part A has shorter 5 questions, (10 points each so total 50 points) while Part B had 5 problems (15 points each, so total is 75 points). Maximum score is thus 125 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides. Clarity and neatness count.

Part A: Five short answer questions (10 points each, so 50 points).
A-1. Which of the following sets are linear spaces? [If not, why not?]
a) The points $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ in \mathbb{R}^{3} with the property $x_{1}-2 x_{3}=0$.
b) The set of points $(x, y) \in \mathbb{R}^{2}$ with $y=x^{2}$.
c) In \mathbb{R}^{2}, the span of the linearly dependent vectors $\binom{1}{-1}$ and $\binom{-1}{1}$.
d) The set of solutions \vec{x} of $A \vec{x}=0$, where A is a 4×3 matrix.
e) The set of polynomials $p(x)$ of degree at most 2 with $p^{\prime}(1)=0$.

A-2. Let \mathcal{S} be the linear space of 2×2 matrices $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a+d=0$. Find a basis and compute the dimension of \mathcal{S}.

A-3. Let S and T be linear spaces and $L: S \rightarrow T$ be a linear map. Say \vec{v}_{1} and \vec{v}_{2} are (distinct!) solutions of the equations $L \vec{x}=\vec{y}_{1}$ while \vec{w} is a solution of $L \vec{x}=\vec{y}_{2}$. Answer the following in terms of \vec{v}_{1}, \vec{v}_{2}, and \vec{w}.
a) Find some solution of $L \vec{x}=2 \vec{y}_{1}-2 \vec{y}_{2}$.
b) Find another solution (other than \vec{w}) of $L \vec{x}=\vec{y}_{2}$.

A-4. Say you have a matrix A.
a) If $A: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$, what are the possible dimensions of the kernel of A ? The image of A ?
b) If $B: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$, what are the possible dimensions of the kernel of B ? The image of B ?

A-5. Let A be any 5×3 matrix so $A \vec{x}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ is a linear transformation. Answer the following with a brief explanation.
a) Is $A \vec{x}=\vec{b}$ necessarily solvable for any \vec{b} in \mathbb{R}^{5} ?
b) Suppose the kernel of A is one dimensional. What is the dimension of the image of A ?

Part B Five questions, 15 points each (so 75 points total).
B-1. Let $Q=\left(\begin{array}{rrr}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1\end{array}\right)$. [NOTE: In this problem, there is no partial credit for sloppy computations.]
a) Find the inverse of Q.
b) Find the inverse of Q^{2}.

B-2. Define the linear maps A, B, and C from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by the rules

- A rotates vectors by $\pi / 2$ radians counterclockwise.
- B reflects vectors across the horizontal axis.
- C orthogonal projection onto the vertical axis, so $\left(x_{1}, x_{2}\right) \rightarrow\left(0, x_{2}\right)$

Let M be the linear map that first applies A, then B, and finally C. Find a matrix that represents M in the standard basis for \mathbb{R}^{2}.
$\mathrm{B}-3$. Let $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given matrices.
a) Show that $B A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ cannot be invertible.
b) Give an example where the matrix $A B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is invertible.

B-4. a) Find all matrices $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ whose kernels contain the vector $\vec{x}:=\left(\begin{array}{r}1 \\ 0 \\ -2\end{array}\right)$.
b) Find a basis for the linear space of these matrices.

B-5. Let $L: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be the linear map that send a polynomial $p(x)$ (of degree at most 2) to $p^{\prime \prime}(x)+3 p(x)$.
a) Find the matrix representation $[L]_{\mathcal{B}}$ of L using the basis $\mathcal{B}=\left\{1, x, x^{2}\right\}$.
b) Find a basis for the kernel of L (you may use your matrix $[L]_{\mathcal{B}}$).
c) Find a basis for the image of L (you may use your matrix $[L]_{\mathcal{B}}$).
d) Is L invertible? Why or why not?.

