Math 312 Oct. 11, 2012

DIRECTIONS This exam has two parts. Part A has shorter 5 questions, (10 points each so total 50 points) while Part B had 5 problems (15 points each, so total is 75 points). Maximum score is thus 125 points.

Closed book, no calculators or computers– but you may use one $3'' \times 5''$ card with notes on both sides. *Clarity and neatness count.*

PART A: Five short answer questions (10 points each, so 50 points).

A-1. Which of the following sets are linear spaces? [If not, why not?]

- a) The points $\vec{x} = (x_1, x_2, x_3)$ in \mathbb{R}^3 with the property $x_1 2x_3 = 0$.
- b) The set of points $(x, y) \in \mathbb{R}^2$ with $y = x^2$.

c) In \mathbb{R}^2 , the span of the linearly dependent vectors $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

- d) The set of solutions \vec{x} of $A\vec{x} = 0$, where A is a 4×3 matrix.
- e) The set of polynomials p(x) of degree at most 2 with p'(1) = 0.
- A-2. Let S be the linear space of 2×2 matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with a + d = 0. Find a basis and compute the dimension of S.
- A-3. Let S and T be linear spaces and $L: S \to T$ be a linear map. Say \vec{v}_1 and \vec{v}_2 are (distinct!) solutions of the equations $L\vec{x} = \vec{y}_1$ while \vec{w} is a solution of $L\vec{x} = \vec{y}_2$. Answer the following in terms of \vec{v}_1 , \vec{v}_2 , and \vec{w} .
 - a) Find some solution of $L\vec{x} = 2\vec{y}_1 2\vec{y}_2$.
 - b) Find another solution (other than \vec{w}) of $L\vec{x} = \vec{y}_2$.

A-4. Say you have a matrix A.

- a) If $A: \mathbb{R}^5 \to \mathbb{R}^5$, what are the possible dimensions of the kernel of A? The image of A?
- b) If $B : \mathbb{R}^5 \to \mathbb{R}^3$, what are the possible dimensions of the kernel of B? The image of B?
- A-5. Let A be any 5×3 matrix so $A\vec{x} : \mathbb{R}^3 \to \mathbb{R}^5$ is a linear transformation. Answer the following with a brief explanation.
 - a) Is $A\vec{x} = \vec{b}$ necessarily solvable for any \vec{b} in \mathbb{R}^5 ?
 - b) Suppose the kernel of A is one dimensional. What is the dimension of the image of A?

PART B Five questions, 15 points each (so 75 points total).

B-1. Let $Q = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$. [NOTE: In this problem, there is *no partial credit* for sloppy computations.]

- a) Find the inverse of Q.
- b) Find the inverse of Q^2 .

B–2. Define the linear maps A, B, and C from $\mathbb{R}^2 \to \mathbb{R}^2$ by the rules

- A rotates vectors by $\pi/2$ radians counterclockwise.
- B reflects vectors across the horizontal axis.
- C orthogonal projection onto the vertical axis, so $(x_1, x_2) \rightarrow (0, x_2)$

Let M be the linear map that first applies A, then B, and finally C. Find a matrix that represents M in the standard basis for \mathbb{R}^2 .

B-3. Let $A : \mathbb{R}^3 \to \mathbb{R}^2$ and $B : \mathbb{R}^2 \to \mathbb{R}^3$ be given matrices.

- a) Show that $BA : \mathbb{R}^3 \to \mathbb{R}^3$ cannot be invertible.
- b) Give an example where the matrix $AB : \mathbb{R}^2 \to \mathbb{R}^2$ is invertible.

B-4. a) Find all matrices $A : \mathbb{R}^3 \to \mathbb{R}^2$ whose kernels contain the vector $\vec{x} := \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$.

- b) Find a basis for the linear space of these matrices.
- B-5. Let $L: \mathcal{P}_2 \to \mathcal{P}_2$ be the linear map that send a polynomial p(x) (of degree at most 2) to p''(x) + 3p(x).
 - a) Find the matrix representation $[L]_{\mathcal{B}}$ of L using the basis $\mathcal{B} = \{1, x, x^2\}$.
 - b) Find a basis for the kernel of L (you may use your matrix $[L]_{\mathcal{B}}$).
 - c) Find a basis for the image of L (you may use your matrix $[L]_{\mathcal{B}}$).
 - d) Is L invertible? Why or why not?.