Directions This exam has two parts. Part A has shorter 5 questions, (10 points each so total 50 points) while Part B had 5 problems (15 points each, so total is 75 points). Maximum score is thus 125 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides. Clarity and neatness count.

Part A: Five short answer questions (10 points each, so 50 points).
A-1. Which of the following sets are linear spaces? [If not, why not?]
a) The points $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ in \mathbb{R}^{3} with the property $x_{1}-2 x_{3}=0$.

Solution: This is a linear space.
b) The set of points $(x, y) \in \mathbb{R}^{2}$ with $y=x^{2}$.

Solution: This is not a linear space. The point $(1,1)$ is in this set but $(2,2)$ is not.
c) In \mathbb{R}^{2}, the span of the linearly dependent vectors $\binom{1}{-1}$ and $\binom{-1}{1}$.

Solution: This is a linear space. It is the linear space of all points of the form $(c,-c)$ for any real scalar c. Geometrically, this is a straight line through the origin in the plane \mathbb{R}^{2}.
d) The set of solutions \vec{x} of $A \vec{x}=0$, where A is a 4×3 matrix.

Solution: This is a linear space: the kernel of A.
e) The set of polynomials $p(x)$ of degree at most 2 with $p^{\prime}(1)=0$.

Solution: This is a linear space since if $p^{\prime}(1)=0$ and $q^{\prime}(1)=0$, then both $(c p)$ and $(p+q)$ have the same property.

A-2. Let \mathcal{S} be the linear space of 2×2 matrices $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a+d=0$. Find a basis and compute the dimension of \mathcal{S}.

Solution: Since $d=-a$, these matrices all have the form

$$
\left(\begin{array}{rr}
a & b \\
c & -a
\end{array}\right)=a\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

so the dimension is 3 .

A-3. Let S and T be linear spaces and $L: S \rightarrow T$ be a linear map. Say \vec{v}_{1} and \vec{v}_{2} are (distinct!) solutions of the equations $L \vec{x}=\vec{y}_{1}$ while \vec{w} is a solution of $L \vec{x}=\vec{y}_{2}$. Answer the following in terms of \vec{v}_{1}, \vec{v}_{2}, and \vec{w}.
a) Find some solution of $L \vec{x}=2 \vec{y}_{1}-2 \vec{y}_{2}$.

Solution: $2 \vec{v}_{1}-2 \vec{w}$. Another is $2 \vec{v}_{2}-2 \vec{w}$.
b) Find another solution (other than \vec{w}) of $L \vec{x}=\vec{y}_{2}$.

Solution: $\vec{v}_{1}-\vec{v}_{2}+\vec{w}$. More generally, $c\left(\vec{v}_{1}-\vec{v}_{2}\right)+\vec{w}$ for any scalar c

A-4. Say you have a matrix A.
a) If $A: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$, what are the possible dimensions of the kernel of A ? The image of A ? Solution: $0,1, \ldots, 5$ for both the image and kernel. The special cases $A=0$ and $A=I$ illustrate the extremes.
b) If $B: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$, what are the possible dimensions of the kernel of B ? The image of B ?

Solution: The image can have dimensions $0,1,2$, or 3 . The kernel can have dimension $2, \ldots, 5$.

A-5. Let A be any 5×3 matrix so $A \vec{x}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ is a linear transformation. Answer the following with a brief explanation.
a) Is $A \vec{x}=\vec{b}$ necessarily solvable for any \vec{b} in \mathbb{R}^{5} ?

Solution: Since the image can have dimension at most 3 and the target has dimension 5 , the map cannot be onto, so there are many vectors \vec{b} for which $A \vec{x}=\vec{b}$ has no solution.
b) Suppose the kernel of A is one dimensional. What is the dimension of the image of A ?

Solution: $\operatorname{dim}(\operatorname{image}(A))=3-1=2$.
Part B Five questions, 15 points each (so 75 points total).
B-1. Let $Q=\left(\begin{array}{rrr}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1\end{array}\right)$. [NOTE: In this problem, there is no partial credit for sloppy computations.]
a) Find the inverse of Q.

Solution: By a routine computation (the matrix is upper triangular),

$$
Q^{-1}=\left(\begin{array}{rrr}
1 & -1 & -1 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right)
$$

b) Find the inverse of Q^{2}.

Solution: The point of this was that it is simplest to use

$$
Q^{-2}=\left(Q^{-1}\right)^{2}=\left(\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{rrr}
1 & -1 & -1 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right)=\left(\begin{array}{rrr}
1 & -2 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

B-2. Define the linear maps A, B, and C from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by the rules

- A rotates vectors by $\pi / 2$ radians counterclockwise.
- B reflects vectors across the horizontal axis.
- C orthogonal projection onto the vertical axis, so $\left(x_{1}, x_{2}\right) \rightarrow\left(0, x_{2}\right)$

Let M be the linear map that first applies A, then B, and finally C. Find a matrix that represents M in the standard basis for \mathbb{R}^{2}.

Solution: method $1 \quad A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right), \quad B=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \quad C=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, so $M=C B A=\left(\begin{array}{rr}0 & 0 \\ -1 & 0\end{array}\right)$

method 2

$$
\begin{aligned}
& (1,0) \xrightarrow{A}(0,1) \xrightarrow{B}(0,-1) \xrightarrow{C}(0,-1) \\
& (0,1) \xrightarrow{A}(-1,0) \xrightarrow{B}(-1,0) \xrightarrow{C}(0,0)
\end{aligned}
$$

so $M=\left(\begin{array}{rr}0 & 0 \\ -1 & 0\end{array}\right)$

B-3. Let $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given matrices.
a) Show that $B A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ cannot be invertible.

Solution: Since $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, then $\operatorname{dim}(\operatorname{ker} A) \geq 1$ so there is a $\vec{z} \in \mathbb{R}^{3}, \vec{z} \neq 0$ such that $A \vec{z}=0$. Consequently $B A \vec{z}=0$ so $B A$ is not one-to-one. Thus it is not invertible.
b) Give an example where the matrix $A B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is invertible.

Solution: Essentially almost any A and B will give an example. Perhaps the simplest is

$$
A:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}\right) \quad \text { and } \quad B:\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1}, x_{2}, 0\right)
$$

As matrices, $A:=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ and $B:=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$.

B-4. a) Find all matrices $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ whose kernels contain the vector $\vec{x}:=\left(\begin{array}{r}1 \\ 0 \\ -2\end{array}\right)$. Solution: Say $A=\left(\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right)$. Then

$$
0=A \vec{x}=\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)\left(\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right)=\binom{a-2 c}{d-2 f}
$$

so $a=2 c$ and $d=2 f$. Thus

$$
A=\left(\begin{array}{lll}
2 c & b & c \\
2 f & e & f
\end{array}\right)
$$

for any scalars $b . c, e$, and f.
b) Find a basis for the linear space of these matrices.

Solution: From the previous part

$$
A=c\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)+b\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)+f\left(\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 1
\end{array}\right)+e\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

so the 4 matrices above are a basis.

B-5. Let $L: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be the linear map that send a polynomial $p(x)$ (of degree at most 2) to $p^{\prime \prime}(x)+3 p(x)$.
a) Find the matrix representation $[L]_{\mathcal{B}}$ of L using the basis $\mathcal{B}=\left\{1, x, x^{2}\right\}$.

Solution: By a straightforward computation, if $p(x)=a+b x+c x^{2}$, then

$$
L p(x)=2 c+3\left(a+b x+c x^{2}\right)=(3 a+2 c) 1+3 b x+3 c x^{2}
$$

If $q(x)=\alpha+\beta x+\gamma x^{2}$, we can seek a polynomial $p(x) \in \mathcal{P}_{2}$ so that $L p=q$. Comparing $L p$ and q above, we need to pick the coefficients a, b, and c so that

$$
\begin{align*}
3 a+2 c & =\alpha \tag{1}\\
3 b & =\beta \\
3 c & =\gamma
\end{align*} \quad \text { that is, } \quad\left(\begin{array}{lll}
3 & 0 & 2 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)
$$

The 3×3 matrix above is the desired matrix $[L]_{\mathcal{B}}$ of L in the basis $\mathcal{B}=\left\{1, x, x^{2}\right\}$.
Let's do this more formally. First we explicitly introduce the basis

$$
e_{1}(x):=1, \quad e_{2}(x):=x, \quad e_{3}(x)=x^{2}
$$

Then

$$
p(x)=a e_{1}(x)+b e_{2}(x)+c e_{3}(x)
$$

and

$$
L e_{1}=3=3 e_{1}, \quad L e_{2}=3 x=3 e_{2}, \quad L e_{3}=2+3 x^{2}=2 e_{1}+3 e_{3}
$$

This gives the 3 columns of the matrix on the right in (1)
b) Find a basis for the kernel of L (you may use your matrix $[L]_{\mathcal{B}}$).

Solution: Either solve the there equations

$$
\begin{aligned}
3 a+2 c & =0 \\
3 b & =0 \\
3 c & =0
\end{aligned}
$$

or find the kernel of the matrix $\left(\begin{array}{lll}3 & 0 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right)$. Both instantly show that the kernel of L acting on quadratic polynomials only has $p(x)=0$.
c) Find a basis for the image of L (you may use your matrix $[L]_{\mathcal{B}}$).

Solution: Since $[L]_{\mathcal{B}}$ is a square matrix whose kernel is trivial (only the vector representing the polynomial $p(x) \equiv 0$), it is invertible, so any basis for \mathcal{P}_{2}, such as $\left\{1, x, x^{2}\right\}$ is a basis for the image.
d) Is L invertible? Why or why not?

Solution: It is invertible. See the answer in part c).

