Math 312 Oct. 11, 2012

DIRECTIONS This exam has two parts. Part A has shorter 5 questions, (10 points each so total 50 points) while Part B had 5 problems (15 points each, so total is 75 points). Maximum score is thus 125 points.

Closed book, no calculators or computers- but you may use one $3'' \times 5''$ card with notes on both sides. *Clarity and neatness count.*

PART A: Five short answer questions (10 points each, so 50 points).

A-1. Which of the following sets are linear spaces? [If not, why not?]

- a) The points $\vec{x} = (x_1, x_2, x_3)$ in \mathbb{R}^3 with the property $x_1 2x_3 = 0$. SOLUTION: This is a linear space.
- b) The set of points $(x, y) \in \mathbb{R}^2$ with $y = x^2$. SOLUTION: This is **not** a linear space. The point (1, 1) is in this set but (2, 2) is not.
- c) In \mathbb{R}^2 , the span of the linearly dependent vectors $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

SOLUTION: This is a linear space. It is the linear space of all points of the form (c, -c) for any real scalar c. Geometrically, this is a straight line through the origin in the plane \mathbb{R}^2 .

d) The set of solutions \vec{x} of $A\vec{x} = 0$, where A is a 4×3 matrix.

SOLUTION: This is a linear space: the kernel of A.

- e) The set of polynomials p(x) of degree at most 2 with p'(1) = 0. SOLUTION: This is a linear space since if p'(1) = 0 and q'(1) = 0, then both (cp) and (p+q) have the same property.
- A-2. Let S be the linear space of 2×2 matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with a + d = 0. Find a basis and compute the dimension of S.

Solution: Since d = -a, these matrices all have the form

$$\begin{pmatrix} a & b \\ c & -a \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

so the dimension is 3.

- A-3. Let S and T be linear spaces and $L: S \to T$ be a linear map. Say \vec{v}_1 and \vec{v}_2 are (distinct!) solutions of the equations $L\vec{x} = \vec{y}_1$ while \vec{w} is a solution of $L\vec{x} = \vec{y}_2$. Answer the following in terms of \vec{v}_1 , \vec{v}_2 , and \vec{w} .
 - a) Find some solution of $L\vec{x} = 2\vec{y}_1 2\vec{y}_2$. SOLUTION: $2\vec{v}_1 - 2\vec{w}$. Another is $2\vec{v}_2 - 2\vec{w}$.

- b) Find another solution (other than \vec{w}) of $L\vec{x} = \vec{y}_2$. SOLUTION: $\vec{v}_1 - \vec{v}_2 + \vec{w}$. More generally, $c(\vec{v}_1 - \vec{v}_2) + \vec{w}$ for any scalar c
- A-4. Say you have a matrix A.
 - a) If $A: \mathbb{R}^5 \to \mathbb{R}^5$, what are the possible dimensions of the kernel of A? The image of A? Solution: 0, 1, ..., 5 for both the image and kernel. The special cases A = 0 and A = I illustrate the extremes.
 - b) If $B: \mathbb{R}^5 \to \mathbb{R}^3$, what are the possible dimensions of the kernel of B? The image of B? SOLUTION: The image can have dimensions 0, 1, 2, or 3. The kernel can have dimension $2, \ldots, 5.$
- A-5. Let A be any 5×3 matrix so $A\vec{x} : \mathbb{R}^3 \to \mathbb{R}^5$ is a linear transformation. Answer the following with a brief explanation.
 - a) Is $A\vec{x} = \vec{b}$ necessarily solvable for any \vec{b} in \mathbb{R}^5 ?

SOLUTION: Since the image can have dimension at most 3 and the target has dimension 5, the map cannot be onto, so there are many vectors \vec{b} for which $A\vec{x} = \vec{b}$ has no solution.

b) Suppose the kernel of A is one dimensional. What is the dimension of the image of A? SOLUTION: $\dim(\operatorname{image}(A)) = 3 - 1 = 2$.

PART B Five questions, 15 points each (so 75 points total).

B-1. Let $Q = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$. [NOTE: In this problem, there is *no partial credit* for sloppy computations

a) Find the inverse of Q.

SOLUTION: By a routine computation (the matrix is upper triangular),

$$Q^{-1} = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

b) Find the inverse of Q^2 .

SOLUTION: The point of this was that it is simplest to use

$$Q^{-2} = (Q^{-1})^2 = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

B-2. Define the linear maps A, B, and C from $\mathbb{R}^2 \to \mathbb{R}^2$ by the rules

- A rotates vectors by $\pi/2$ radians counterclockwise.
- B reflects vectors across the horizontal axis.
- C orthogonal projection onto the vertical axis, so $(x_1, x_2) \rightarrow (0, x_2)$

Let M be the linear map that first applies A, then B, and finally C. Find a matrix that represents M in the standard basis for \mathbb{R}^2 .

SOLUTION: **method 1** $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, C = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \text{ so } M = CBA = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$ **method 2** $(1,0) \xrightarrow{A} (0,1) \xrightarrow{B} (0,-1) \xrightarrow{C} (0,-1)$

$$(0,1) \xrightarrow{A} (-1,0) \xrightarrow{B} (-1,0) \xrightarrow{C} (0,0)$$

so $M = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$

As

B-3. Let $A : \mathbb{R}^3 \to \mathbb{R}^2$ and $B : \mathbb{R}^2 \to \mathbb{R}^3$ be given matrices.

a) Show that $BA : \mathbb{R}^3 \to \mathbb{R}^3$ cannot be invertible.

SOLUTION: Since $A : \mathbb{R}^3 \to \mathbb{R}^2$, then dim(ker A) ≥ 1 so there is a $\vec{z} \in \mathbb{R}^3$, $\vec{z} \neq 0$ such that $A\vec{z} = 0$. Consequently $BA\vec{z} = 0$ so BA is not one-to-one. Thus it is not invertible.

b) Give an example where the matrix $AB : \mathbb{R}^2 \to \mathbb{R}^2$ is invertible.

SOLUTION: Essentially almost any A and B will give an example. Perhaps the simplest is

$$A: (x_1, x_2, x_3) \to (x_1, x_2) \quad \text{and} \quad B: (x_1, x_2) \to (x_1, x_2, 0).$$

matrices, $A:=\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0 \end{pmatrix}$ and $B:=\begin{pmatrix} 1 & 0\\ 0 & 1\\ 0 & 0 \end{pmatrix}.$

B-4. a) Find all matrices $A : \mathbb{R}^3 \to \mathbb{R}^2$ whose kernels contain the vector $\vec{x} := \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$.

SOLUTION: Say $A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}$. Then

$$0 = A\vec{x} = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} = \begin{pmatrix} a - 2c \\ d - 2f \end{pmatrix}$$

so a = 2c and d = 2f. Thus

$$A = \begin{pmatrix} 2c & b & c \\ 2f & e & f \end{pmatrix}$$

for any scalars b. c, e, and f.

b) Find a basis for the linear space of these matrices.

SOLUTION: From the previous part

$$A = c \begin{pmatrix} 2 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix} + e \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

so the 4 matrices above are a basis.

- B-5. Let $L: \mathcal{P}_2 \to \mathcal{P}_2$ be the linear map that send a polynomial p(x) (of degree at most 2) to p''(x) + 3p(x).
 - a) Find the matrix representation $[L]_{\mathcal{B}}$ of L using the basis $\mathcal{B} = \{1, x, x^2\}$. SOLUTION: By a straightforward computation, if $p(x) = a + bx + cx^2$, then

$$Lp(x) = 2c + 3(a + bx + cx^{2}) = (3a + 2c)1 + 3bx + 3cx^{2}.$$

If $q(x) = \alpha + \beta x + \gamma x^2$, we can seek a polynomial $p(x) \in \mathcal{P}_2$ so that Lp = q. Comparing Lp and q above, we need to pick the coefficients a, b, and c so that

$$3a + 2c = \alpha$$

$$3b = \beta \quad \text{that is,} \quad \begin{pmatrix} 3 & 0 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}. \quad (1)$$

The 3 × 3 matrix above is the desired matrix $[L]_{\mathcal{B}}$ of L in the basis $\mathcal{B} = \{1, x, x^2\}$. Let's do this more formally. First we explicitly introduce the basis

$$e_1(x) := 1, \qquad e_2(x) := x, \qquad e_3(x) = x^2$$

Then

$$p(x) = ae_1(x) + be_2(x) + ce_3(x)$$

and

$$Le_1 = 3 = 3e_1,$$
 $Le_2 = 3x = 3e_2,$ $Le_3 = 2 + 3x^2 = 2e_1 + 3e_3$

This gives the 3 columns of the matrix on the right in (1)

b) Find a basis for the kernel of L (you may use your matrix $[L]_{\mathcal{B}}$).

SOLUTION: Either solve the there equations

$$3a + 2c = 0$$
$$3b = 0$$
$$3c = 0$$

or find the kernel of the matrix $\begin{pmatrix} 3 & 0 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Both instantly show that the kernel of L acting on quadratic polynomials only has p(x) = 0.

c) Find a basis for the image of L (you may use your matrix $[L]_{\mathcal{B}}$).

SOLUTION: Since $[L]_{\mathcal{B}}$ is a square matrix whose kernel is trivial (only the vector representing the polynomial $p(x) \equiv 0$), it is invertible, so any basis for \mathcal{P}_2 , such as $\{1, x, x^2\}$ is a basis for the image.

d) Is L invertible? Why or why not?.

SOLUTION: It is invertible. See the answer in part c).