Math 312
Exam 2
Jerry L. Kazdan
Nov. 15, 2012
Directions This exam has two parts. Part A has 6 shorter questions, (5 points each so total 30 points) while Part B had 5 problems (10 points each, so total is 50 points). Maximum score is thus 80 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides. Clarity and neatness count.

Part A: Six short answer questions (5 points each, so 30 points). To receive credit you must explain your reasoning at least briefly.

A-1. Find all invertible linear maps $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with the property $A^{2}=3 A$.

A-2. Let $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ be a linear map. If $\operatorname{dim} \operatorname{im}(A)=2$, what is $\operatorname{dimim}(A)^{\perp}$?

A-3. If a certain matrix C satisfies $\langle\vec{x}, C \vec{y}\rangle=0$ for all vectors \vec{x} and \vec{y}, show that $C=0$.

Score	
A-1	
A-2	
A-3	
A-4	
A-5	
A-6	
B-1	
B-2	
B-3	
B-4	
B-5	
Total	

A-4. Say $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear map with the property that $A^{2}-3 A+2 I=0$.

Total If $\vec{v} \neq 0$ is an eigenvector of A with eigenvalue λ,, so $A \vec{v}=\lambda \vec{v}$, what are the possible values of λ ?

A-5. Under what conditions on the constants a, b, c, and d is the following matrix A positive definite, that is, $\langle\vec{x}, A \vec{x}\rangle>0$ for all $\vec{x} \neq 0$?

$$
A:=\left(\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right)
$$

A-6. Let A be an $n \times n$ matrix with columns $A_{1}, A_{2}, \ldots, A_{n}$ and let B be the matrix where A_{1} (the first column of A), is replaced by $3 A_{1}+A_{2}$ and the other columns are unchanged. Compute $\operatorname{det} B$ in terms of $\operatorname{det} A$.

Part B: Five problems (10 points each, so 50 points).
B-1. Consider the space of real cubic polynomials \mathcal{P}_{3} having degree at most 3 , so $p(x)=a_{0}+$ $a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ with the inner product $\langle f, g\rangle:=\int_{-1}^{1} f(x) g(x) x^{2} d x$ [NOTE: This is not the usual inner product.]

Find the orthogonal projection of x^{3} into the subspace spanned by 1 and x.

B-2. Let A be an $n \times n$ matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and corresponding eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$. Say $\vec{x}=c_{1} \vec{v}_{1}+\cdots+c_{n} \vec{v}_{n}$.
a) Compute $A^{2} \vec{x}$ and $A^{2} \vec{x}$ in terms of the c_{i}, λ_{i} and $\vec{v}_{i}, i=1, \ldots, n$.
b) If $\lambda_{1}=1$ and the remaining λ_{j} satisfy $\left|\lambda_{j}\right|<1, j=2, \ldots, n$, compute $\lim _{k \rightarrow \infty} A^{k} \vec{x}$. [This arises in the study of Markov Chains].

B-3. In an experiment, at time t you measure the value of a quantity R and obtain:

t	-1	0	1	2
R	-1	1	1	-3

Based on other information, you believe the data should fit a curve of the form $R=a+b t^{2}$.
a) Write the (over-determined) system of linear equations you would ideally like to solve for the unknown coefficients a and b.
b) Use the method of least squares to find the normal equations for the coefficients a and b.
c) Solve the normal equations to find the coefficients a and b explicitly (numbers, like $3 / 5$ and -2).

B-4. A projection $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (so $P^{2}=P$) is called an orthogonal projection if the image of P and kernel of P are orthogonal subspaces.

If P is self-adjoint, so $P^{*}=P$, show that P is an orthogonal projection. [REmark: The converse is also true: If P is an orthogonal projection, then $P=P^{*}$. You are not asked to prove this here.]

B-5. Let A be a real $n \times n$ anti-symmetric matrix, so $A^{*}=-A$.
a) Show that $A \vec{x}$ is orthogonal to \vec{x} for every vector \vec{x}.
b) Say $\vec{x}(t)$ is a solution of the differential equation $\frac{d \vec{x}}{d t}=A \vec{x}$, where A is an anti-symmetric matrix. Show that $\|\vec{x}(t)\|=$ constant.

