Signature

PRINTED NAME

Math 312 Nov. 15, 2012

DIRECTIONS This exam has two parts. Part A has 6 shorter questions, (5 points each so total 30 points) while Part B had 5 problems (10 points each, so total is 50 points). Maximum score is thus 80 points.

Exam 2

Closed book, no calculators or computers– but you may use one $3'' \times 5''$ card with notes on both sides. *Clarity and neatness count.*

PART A: Six short answer questions (5 points each, so 30 points). To receive credit you *must* explain your reasoning at least briefly.

A-1. Find all *invertible* linear maps $A : \mathbb{R}^n \to \mathbb{R}^n$ with the property $A^2 = 3A$.

A-2. Let $A: \mathbb{R}^3 \to \mathbb{R}^5$ be a linear map. If dim im(A) = 2, what is dim im $(A)^{\perp}$?

- A-3. If a certain matrix C satisfies $\langle \vec{x}, C\vec{y} \rangle = 0$ for all vectors \vec{x} and \vec{y} , show that C = 0.
- A-4. Say $A : \mathbb{R}^n \to \mathbb{R}^n$ is a linear map with the property that $A^2 3A + 2I = 0$. If $\vec{v} \neq 0$ is an eigenvector of A with eigenvalue λ , so $A\vec{v} = \lambda\vec{v}$, what are the possible values of λ ?
- A-5. Under what conditions on the constants a, b, c, and d is the following matrix A positive definite, that is, $\langle \vec{x}, A\vec{x} \rangle > 0$ for all $\vec{x} \neq 0$?

	(a	0	0	0
A :=	0	b	0	0
	0	0	c	0
	$\setminus 0$	0	0	d

A-6. Let A be an $n \times n$ matrix with columns A_1, A_2, \ldots, A_n and let B be the matrix where A_1 (the first column of A), is replaced by $3A_1 + A_2$ and the other columns are unchanged. Compute det B in terms of det A.

PART B: Five problems (10 points each, so 50 points).

B-1. Consider the space of real cubic polynomials \mathcal{P}_3 having degree at most 3, so $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ with the inner product $\langle f, g \rangle := \int_{-1}^{1} f(x)g(x)x^2 dx$ [NOTE: This is not the usual inner product.]

Find the orthogonal projection of x^3 into the subspace spanned by 1 and x.

B-2. Let A be an $n \times n$ matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ and corresponding eigenvectors $\vec{v}_1, \ldots, \vec{v}_n$. Say $\vec{x} = c_1 \vec{v}_1 + \cdots + c_n \vec{v}_n$.

- a) Compute $A^2 \vec{x}$ and $A^3 \vec{x}$ in terms of the c_i , λ_i and \vec{v}_i , i = 1, ..., n.
- b) If $\lambda_1 = 1$ and the remaining λ_j satisfy $|\lambda_j| < 1$, j = 2, ..., n, compute $\lim_{k\to\infty} A^k \vec{x}$. [This arises in the study of *Markov Chains*].

B-3. In an experiment, at time t you measure the value of a quantity R and obtain:

t	-1	0	1	2
R	-1	1	1	-3

Based on other information, you believe the data should fit a curve of the form $R = a + bt^2$.

- a) Write the (over-determined) system of linear equations you would ideally like to solve for the unknown coefficients a and b.
- b) Use the method of least squares to find the *normal equations* for the coefficients a and b.
- c) Solve the normal equations to find the coefficients a and b explicitly (numbers, like 3/5 and -2).
- B-4. A projection $P : \mathbb{R}^n \to \mathbb{R}^n$ (so $P^2 = P$) is called an *orthogonal projection* if the image of P and kernel of P are orthogonal subspaces.

If P is self-adjoint, so $P^* = P$, show that P is an orthogonal projection. [REMARK: The converse is also true: If P is an orthogonal projection, then $P = P^*$. You are not asked to prove this here.]

- B-5. Let A be a real $n \times n$ anti-symmetric matrix, so $A^* = -A$.
 - a) Show that $A\vec{x}$ is orthogonal to \vec{x} for every vector \vec{x} .
 - b) Say $\vec{x}(t)$ is a solution of the differential equation $\frac{d\vec{x}}{dt} = A\vec{x}$, where A is an anti-symmetric matrix. Show that $\|\vec{x}(t)\| = \text{constant}$.