Directions This exam has two parts, Part A, shorter problems, has 5 problem (6 points each so 30 points). Part B has 6 standard problems (10 points each, so 60 points). Total is 90 points. Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides. Please justify your answers with clear reasons. No credit will be given to "correct" answers with either no or incorrect reasons.

Part A: Short Problems (5 problem, 6 points each).

1. Give an example of a linear map $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with the property that $A^{4}=I$ but $A^{2} \neq I$.
2. Let V and W be linear spaces and $A: V \rightarrow W$ a linear map. Show that the image of A is a linear space.
3. Let A be a square matrix. If A^{2} is invertible, must A be invertible? Proof or counterexample.
4. Let A be a matrix all of whose eigenvalues are 1 . If A is diagonalizable, show that A must be the identity matrix, $A=I$.
5. Let A be real matrix with a real eigenvalue λ and corresponding eigenvector \vec{v}. Similarly let μ be an eigenvalue of A^{*} with corresponding eigenvector \vec{w}. If $\mu \neq \lambda$, show that \vec{v} and \vec{w} are orthogonal.

Part B: Traditional Problems (6 problems, 10 points each so 60 points)
B-1. For the following figure find a matrix A and vector V that gives the indicated transformation $T X=V+A X$. [The new \mathbf{F} is bold.]

B-2. A psychologist places a rat in a cage with three compartments (see figure). The rat has been trained to select a door at random whenever a bell is rung and to move to one of the adjacent compartments.
a) If the rat is initially in compartment 1 , what is the probability that it will be in compartment 2 after the bell has rung twice?

b) In the long run, what proportion of the time will the rat spend in each compartment?
$\mathrm{B}-3$. Let B be a diagonalizable 3×3 matrix whose rank is 1 (that is, the dimension of its image is 1). If its trace is 10 , what are the eigenvalues of B ? Be sure to describe any multiplicities and explain your answer.

B-4. Let $\quad A:=\left(\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right), \quad B:=\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right), \quad C:=\left(\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right)$.
One of these can be diagonalized by an orthogonal transformation, one can be diagonalized but not by an orthogonal transformation, and one cannot be diagonalized. Identify these, explaining your reasoning.

B-5. Let $\quad A:=\left(\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right)$ and $\vec{x}(t)=\binom{x_{1}(t)}{x_{2}(t)} . \quad$ Solve $\frac{d \vec{x}}{d t}=A \vec{x}$ with $\vec{x}(0)=\binom{1}{0}$.

B-6. Let A be a self-adjoint $n \times n$ matrix with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$. Show that $\langle\vec{x}, A \vec{x}\rangle \geq \lambda_{1}\|\vec{x}\|^{2}$ for any $\vec{x} \neq 0$.

