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Math 312 Exam 3 Jerry L. Kazdan
Dec. 6, 2012 12:00 – 1:20

Directions This exam has two parts, Part A, shorter problems, has 5 problem (6 points each so
30 points). Part B has 6 standard problems (10 points each, so 60 points). Total is 90 points.
Closed book, no calculators or computers– but you may use one 3′′ × 5′′ card with notes on both
sides. Please justify your answers with clear reasons. No credit will be given to “correct” answers
with either no or incorrect reasons.

Part A: Short Problems (5 problem, 6 points each).

1. Give an example of a linear map A : R2 → R
2 with the property that A4 = I but A2 6= I .

Solution: Perhaps the simplest example is a matrix that rotates a vector by 90 degrees:
(

0 −1
1 0

)

.

The following is almost an example: M :=

(

i 0
0 i

)

, where i =
√
−1. However this matrix has

complex numbers so M maps real vectors to complex vectors, which is not what was sought.

2. Let V and W be linear spaces and A : V → W a linear map. Show that the image of A is a
linear space.

Solution: Let ~w1 and ~w2 be in the image of A . We need to show that c~w1 and ~w1 + ~w2

are in the image of A for any scalar c .

Since ~w1 and ~w2 are in the image of A , there are vectors ~v1 and ~v2 in V such that A~v1 = ~w1

and A~v2 = ~w2 . Therefore

A(c~v1) = cA~v1 = c~w1 and A(~v1 + ~v2) = ~w1 + ~w2

so both c~w1 and ~w1 + ~w2 are in the image of A .

3. Let A be a square matrix. If A2 is invertible, must A be invertible? Proof or counterexample.

Solution: Method 1: Since A2 is invertible then detA2 6= 0. But detA2 = (detA)(detA)
so detA 6= 0. Therefore A is invertible.

Method 2: Since A is a square matrix, it is invertible if and only if ker(A) = 0. But if
A~v = 0 for some ~v 6= 0, then A2~v = 0 which contradicts the invertibility of A2 .

Method 3: Since A is a square matrix, it is invertible if and only if it is onto, that is, for
any ~y there is a solution of A~x = ~y . But there is a solution of A2~u = ~y . But then A(A~u) = ~y .
Thus ~x = A~u is the desired solution.
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Method 4: This is perhaps the best method since it explicitly exhibits the desired inverse.
Some students in the class devised it – but I had not.

We know that (A2)−1 exists and has the property that

I = (A2)−1A2 = [(A2)−1A]A.

Thus the expression in brackets, B := (A2)−1A is the desired A−1 because I = BA . Note
that also AB = I , either by beginning with I = A2(A2)−1 or else by using the fact that for
a square matrix, a left inverse, I = BA (which is equivalent to A being one-to-one), is also a
right inverse, I = AB (which is equivalent to A being onto).

Remark: The following is not a proof: (A2)−1 = (A−1)2 since this proof relies on the identity
(AB)−1 = B−1A−1 which requires the prior assumption that both A and B are invertible.
The formula (AB)−1 = B−1A−1 is valuable to show that if both A and B are invertible, then
so is AB , but it does not imply the converse.

The following is a standard example where AB = I but neither A nor B are invertible:

AB =

(

1 0 0
0 1 0

)





1 0
0 1
0 0



 =

(

1 0
0 1

)

.

It is true that if A and B are both n × n matrices (so they are both square matrices of the
same size), then AB = I implies that both A and B are invertible. This follows from either
of Methods 1, 2, or 3 above.

4. Let A be a matrix all of whose eigenvalues are 1. If A is diagonalizable, show that A must
be the identity matrix, A = I .

Solution: Since A is diagonalizable, then S−1AS = D for some invertible matrix S , where
D is a diagonal matrix with the eigenvalues of A on the diagonal. Thus A = SDS−1 . In this
case, D − I . Thus A = SIS−1 = I .

There is an equally simple proof using the diagonalizable of A as meaning there is a basis of
eigenvectors of A .

Remark: The matrix B := ( 1 1
0 1

) has all its eigenvalue are 1 yet it is not the identity matrix.
It is not diagonalizable.

5. Let A be real matrix with a real eigenvalue λ and corresponding eigenvector ~v . Similarly let
µ be an eigenvalue of A∗ with corresponding eigenvector ~w . If µ 6= λ , show that ~v and ~w are
orthogonal.

Solution:

〈A~v, ~w〉 = 〈λ~v, ~w〉 = λ〈~v, ~w〉 and 〈~v, A∗ ~w〉 = 〈~v, µ~w〉 = µ〈~v, ~w〉.
But 〈A~v, ~w〉 = 〈~v, A∗ ~w〉 . Therefore

λ〈~v, ~w〉 = µ〈~v, ~w〉.
Since λ 6= µ , then 〈~v, ~w〉 = 0.
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Part B: Traditional Problems (6 problems, 10 points each so 60 points)

B–1. For the following figure find a matrix A and vector V that gives the indicated transformation
TX = V +AX . [The new F is bold.]

Solution: Since T0 = V and from the figure T :

(

0
0

)

→
(

−5
0

)

, we find that V =

(

−5
0

)

.

To find A , we note that AX = TX − V is the same map, only keeping the origin fixed. There
are several ways to find A .

Method 1 Observe that A : (1, 0) 7→ (0, −1) and A : (0, 1) 7→ (−1, 0). These are the

columns of A =

(

0 −1
−1 0

)

.

Method 2 A can be obtained rotating by +π/2 and then reflecting across the x−axis:

A =

(

1 0
0 −1

)(

0 −1
1 0

)

=

(

0 −1
−1 0

)

.

Method 3 A can be obtained by reflecting across the y−axis, then rotating by +π/2:

A =

(

0 −1
1 0

)(

−1 0
0 1

)

=

(

0 −1
−1 0

)

.

Method 4 First reflect across the x−axis, then rotate by −π/2:

A =

(

0 1
−1 0

)(

1 0
0 −1

)

=

(

0 −1
−1 0

)

.

Method 5 First rotate by −π/2 , then reflect across the y−axis. The details should now be
routine.

In summary, TX =

(

−5
0

)

+

(

0 −1
−1 0

)

X . As a check, T :

(

1
1

)

→
(

−6
−1

)

.

Note that in Methods 2–5, we just used combinations of various orthogonal transformations.
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B–2. A psychologist places a rat in a cage with
three compartments (see figure). The rat has
been trained to select a door at random when-
ever a bell is rung and to move to one of the
adjacent compartments.
a) If the rat is initially in compartment 1,

what is the probability that it will be in
compartment 2 after the bell has rung
twice?

Solution: Note that if the rat is in
room 2, then, since there are two doors to
compartment 3 but only one door to com-
partment 1, at the next stage the proba-
bility that it will be in compartment 3 is

2/3 while the probability that it will be in compartment 1 is 1/3. The transition matrix
for this is

T :=





0 1/3 1/3
1/2 0 2/3
1/2 2/3 0





Starting in the first compartment, after the bell has rung once and twice, the probabilities
respectively are

T





1
0
0



 =





0
1/2
1/2



 and T 2





1
0
0



 = T





0
1/2
1/2



 =





1/3
1/3
1/3



 .

Thus, after the bell has rung twice, the probability is 1/3 that it will be in compartment 2
(or any of the compartments).

b) In the long run, what proportion of the time will the rat spend in each compartment?

Solution: We want the stable state of this process. This is the state determined by the
eigenvector V associated with the eigenvalue 1, that is, TV = 1V . After a straightforward

computation we find V =





2
3
3



 . However, to get a probability vector we need to normalize

this so the sum of the components are 1. This gives the probability eigenvector P =





1/4
3/8
3/8



 .

It tells us that the rat will spend 1/4 of its time in compartment one and 3/8 of its time in
each of compartments two and three,

B–3. Let B be a diagonalizable 3× 3 matrix whose rank is 1 (that is, the dimension of its image
is 1). If its trace is 10, what are the eigenvalues of B ? Be sure to describe any multiplicities
and explain your answer.



Name (print) 5

Solution: There are two approaches, one using the assumption that B can be diagonalized
and one not using this assumption. [Warning: Matrices with the same echelon form are
rarely similar.]

Method 1 (assuming B is similar to a diagonal matrix). Since the eigenvalues and both their
algebraic and geometric multiplicities (but not the eigenvectors themselves) are preserved, we
can assume that B is a diagonal matrix with its eigenvalues on the diagonal:

B =





λ1 0 0
0 λ2 0
0 0 λ3



 .

The rank of a diagonal matrix is the number of non-zero elements on the diagonal (why?).
Because B has rank 1, only one of its eigenvalues is not zero. Say λ1 6= 0 and λ2 = λ3 = 0.
Since 10 = trace (B) = λ1 + λ2 + λ3 , we see that λ1 = 10 with algebraic and geometric
multiplicity 1 while λ = 0 has algebraic and geometric multiplicity 2.

Method 2 (not assuming B is similar to a diagonal matrix). Since dim(image (B) = 1, then
dimker(B) = 2 (why?). But every vector in the ker(B) is an eigenvector associated with the
eigenvalue 0. Label these eigenvalues λ2 = 0 and λ3 = 0 and pick any two linearly independent
vectors in the kernel as the eigenvectors. Since trace(B) = 10, then λ1 = 10 with algebraic
and geometric multiplicity one.

This approach proves that a rank one matrix with a non-zero eigenvalue is similar to a diagonal
matrix. The example ( 0 1

0 0
) shows that a rank one matrix all of whose eigenvalues are zero

might not be diagonalizable.

B–4. Let A :=

(

1 −1
−1 1

)

, B :=

(

1 −1
1 −1

)

, C :=

(

1 1
−1 1

)

.

One of these can be diagonalized by an orthogonal transformation, one can be diagonalized
but not by an orthogonal transformation, and one cannot be diagonalized. Identify these,
explaining your reasoning.

Solution: Since A is a symmetric matrix, it can be diagonalized by an orthogonal matrix.

Since det(B − λI) = λ2 , both of its eigenvalues are zero. However since dimkerB = 1, this
eigenvalue has geometric multiplicity one so B can’t be diagonalized.

Another approach is to use the idea of problem A-4 above to see that if all of the eigenvalues
of a matrix are zero, the matrix can be diagonalized if and only if it is the 0 matrix.

Since the eigenvalues of C are distinct (they are complex conjugates), it can be diagonalized –
but not by a real orthogonal matrix,

B–5. Let A :=

(

4 1
1 4

)

and ~x(t) =

(

x1(t)
x2(t)

)

. Solve
d~x

dt
= A~x with ~x(0) =

(

1
0

)

.
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Solution: The key observation is that if A were a diagonal matrix, this would be simple.
Thus we begin by finding the eigenvalues ad eigenvectors of A . By an easy calculation

det(A− λI) = λ2 − 8λ+ 15 = (λ− 3)(λ− 5).

Thus the eigenvalues are λ1 = 3 and λ2 = 5 with corresponding eigenvectors ~v1 =

(

1
−1

)

and

~v2 =

(

1
1

)

. From here we can proceed in two slightly different ways.

Method 1 Observe that A is similar to the diagonal matrix D =

(

3 0
0 5

)

, that is, S−1AS =

D , where S =

(

1 1
−1 1

)

has the corresponding eigenvectors as its columns. Thus A = SDS−1 .

We now use this in our differential equation: ~x′(t) = SDS−1~x . Multiply both sides by S−1 .
Since S does not depend on t , (S−1~x(t))′ = DS−1~x . This is simpler to use if we let ~y(t) =
S−1~x . Then the differential equation becomes

d~y(t)

dt
= D~y(t),

that is,
(

y′
1
(t)

y′
2
(t)

)

=

(

3 0
0 5

)(

y1(t)
y2(t)

)

=

(

3y1(t)
5y2(t)

)

.

These are uncoupled differential equations, y′
1
= 3y1 , y′

2
= 4y2 , that one can solve immediately

giving
y1(t) = ae3t, y2(t) = be5t,

for any constants a and b .

It remains to return to restate this in terms of ~x(t)

~x(t) = S~y(t) =

(

1 1
−1 1

)(

ae3t

be5t

)

=

(

ae3t + be5t

−ae3t + be5t

)

We use the initial condition to determine the constants a and b .
(

1
0

)

= ~x(0) =

(

a+ b
−a+ b

)

.

Thus a = b = 1/2. Therefore

~x(t) =
1

2

(

e3t + e5t

−e3t + e5t

)

.

Method 2 Since the eigenvectors ~v1 and ~v2 are a basis for R
2 , given any x(t), there are

functions y1(t) and y2(t) so that

~x(t) = y1(t)~v1 + y2(t)~v2. (1)
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We now plug this in the differential equation ~x ′ = A~x . The left side becomes

~x ′(t) = y′1(t)~v1 + y′2(t)~v2,

and the more interesting right side becomes

A~x = 3y1~v1 + 5y2~v2.

Comparing the coefficients of ~v1 and ~v2 in the last two equations we conclude that

y′1 = 3y1 and y′2 = 5y2.

Their solutions are
y1(t) = ae3t and y2(t) = be5t

for any constants a and b . Using this in equation (1) we find

~x(t) = ae3t
(

1
−1

)

+ be5t
(

1
1

)

.

Finally, use the initial condition to determine a and b :
(

1
0

)

= ~x(0) = a

(

1
−1

)

+ b

(

1
1

)

.

This gives a = b = 1/2. Therefore

~x(t) =
1

2

[

e3t
(

1
−1

)

+ e5t
(

1
1

)]

.

B–6. Let A be a self-adjoint n × n matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn . Show that
〈~x, A~x〉 ≥ λ1‖~x‖2 for any ~x .

Solution: If A is any matrix with real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn , and corresponding
real eigenvectors ~v1 ,. . . ,~vn , then 〈~vj , A~vj〉 = λj‖~vj‖2 ≥ λ1‖~vj‖2 . This is trivial.
The point of this problem is that in the special case where A is self-adjoint, the inequality
〈~x,A~x, ≥〉λ1‖~x‖2 holds for any vector ~x .

There are two slightly different methods, identical in style to the two methods used for Problem
B-5 just above.

Method 1. Since A is self adjoint there is an orthogonal transformation R so that R∗AR = D
where D is a real diagonal matrix whose diagonal elements are the eigenvalues of A . Thus
A = RDR∗ so for any ~x

〈~x, A~x〉 = 〈~x, RDR∗~x〉 = 〈R∗~x, DR∗~x〉.

Write ~y = R∗~x . Then from the previous line

〈~x, A~x〉 =〈~y, D~y〉
= λ1y

2

1 + λ2y
2

2 + · · ·+ λny
2

n

≥ λ1(y
2

1 + · · ·+ y2n)

=λ1‖~y‖2 = λ1‖R~x‖2 = λ1‖~x‖2,
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where in the last step we used that an orthogonal transformation R preserves lengths: ‖R~x‖ =
‖~x‖ for all vectors ~x .

Method 2. Since A is self adjoint, there is an orthonormal basis of eigenvectors ~v1 ,. . . ,~vn ,
where A~vj = λj~vj .

Any vector ~x can be written in this basis

~x = y1~v1 + y2~v2 + · · ·+ yn~vn. (2)

Note that because the ~vj are orthonormal,

‖~x‖2 = 〈~x, ~x〉 = y21 + y22 + · · ·+ y2n. (3)

Then

A~x =A(y1~v1 + y2~v2 + · · ·+ yn~vn)

=λ1y1~v1 + λ2y2~v2 + · · ·+ λnyn~vn.

Therefore, since the ~vj are orthonormal and by equation (3)

〈~x, A~x〉 = λ1y
2

1 + λ2y
2

2 + · · ·+ λny
2

n

≥ λ1(y
2

1 + · · ·+ y2n) = λ1‖~x‖2.


