
Error-correcting codes
Computer graphics

Math 312: Class meeting 10
Some applications

Jeff Jauregui

September 26, 2012

Linear systems



Error-correcting codes
Computer graphics

Errors in transmission

Situation: transmitting a binary data signal (0’s and 1’s)
across some (noisy) channel.

Errors (0s and 1s being randomly swapped) will occur.

Examples: WiFi, cell phones, lasers reading DVDs, etc.

Problem: devise a scheme for errors to be detected, corrected
automatically by receiver.

Linear systems



Error-correcting codes
Computer graphics

Errors in transmission

Situation: transmitting a binary data signal (0’s and 1’s)
across some (noisy) channel.

Errors (0s and 1s being randomly swapped) will occur.

Examples: WiFi, cell phones, lasers reading DVDs, etc.

Problem: devise a scheme for errors to be detected, corrected
automatically by receiver.

Linear systems



Error-correcting codes
Computer graphics

Errors in transmission

Situation: transmitting a binary data signal (0’s and 1’s)
across some (noisy) channel.

Errors (0s and 1s being randomly swapped) will occur.

Examples: WiFi, cell phones, lasers reading DVDs, etc.

Problem: devise a scheme for errors to be detected, corrected
automatically by receiver.

Linear systems



Error-correcting codes
Computer graphics

Errors in transmission

Situation: transmitting a binary data signal (0’s and 1’s)
across some (noisy) channel.

Errors (0s and 1s being randomly swapped) will occur.

Examples: WiFi, cell phones, lasers reading DVDs, etc.

Problem: devise a scheme for errors to be detected, corrected
automatically by receiver.

Linear systems



Error-correcting codes
Computer graphics

Naive solution 1

One idea: sender repeats each bit (0 or 1) in segments of two.

Data [0 1 0] would be encoded as [0 0 : 1 1 : 0 0],
etc.

If recipient gets [0 0 : 1 1 : 1 0], for instance, they know
an error occurred in third segment of message.

But they can’t correct the error!

We’ll ignore possibility of multiple errors.

Linear systems



Error-correcting codes
Computer graphics

Naive solution 1

One idea: sender repeats each bit (0 or 1) in segments of two.

Data [0 1 0] would be encoded as [0 0 : 1 1 : 0 0],
etc.

If recipient gets [0 0 : 1 1 : 1 0], for instance, they know
an error occurred in third segment of message.

But they can’t correct the error!

We’ll ignore possibility of multiple errors.

Linear systems



Error-correcting codes
Computer graphics

Naive solution 1

One idea: sender repeats each bit (0 or 1) in segments of two.

Data [0 1 0] would be encoded as [0 0 : 1 1 : 0 0],
etc.

If recipient gets [0 0 : 1 1 : 1 0], for instance, they know
an error occurred in third segment of message.

But they can’t correct the error!

We’ll ignore possibility of multiple errors.

Linear systems



Error-correcting codes
Computer graphics

Naive solution 1

One idea: sender repeats each bit (0 or 1) in segments of two.

Data [0 1 0] would be encoded as [0 0 : 1 1 : 0 0],
etc.

If recipient gets [0 0 : 1 1 : 1 0], for instance, they know
an error occurred in third segment of message.

But they can’t correct the error!

We’ll ignore possibility of multiple errors.

Linear systems



Error-correcting codes
Computer graphics

Naive solution 1

One idea: sender repeats each bit (0 or 1) in segments of two.

Data [0 1 0] would be encoded as [0 0 : 1 1 : 0 0],
etc.

If recipient gets [0 0 : 1 1 : 1 0], for instance, they know
an error occurred in third segment of message.

But they can’t correct the error!

We’ll ignore possibility of multiple errors.

Linear systems



Error-correcting codes
Computer graphics

Naive solution 2

Next idea: sender repeats each bit (0 or 1) in segments of
three.

Data [0 1 0] would be encoded as
[0 0 0 : 1 1 1 : 0 0 0], etc., and sent.

If recipient gets [0 0 0 : 1 1 0 : 0 0 0], for instance,
they know an error occurred in second segment.

Second segment should have been 1 1 1, so message can be
corrected.

The cost: requires 3 times as much data to send.

Linear systems



Error-correcting codes
Computer graphics

Naive solution 2

Next idea: sender repeats each bit (0 or 1) in segments of
three.

Data [0 1 0] would be encoded as
[0 0 0 : 1 1 1 : 0 0 0], etc., and sent.

If recipient gets [0 0 0 : 1 1 0 : 0 0 0], for instance,
they know an error occurred in second segment.

Second segment should have been 1 1 1, so message can be
corrected.

The cost: requires 3 times as much data to send.

Linear systems



Error-correcting codes
Computer graphics

Naive solution 2

Next idea: sender repeats each bit (0 or 1) in segments of
three.

Data [0 1 0] would be encoded as
[0 0 0 : 1 1 1 : 0 0 0], etc., and sent.

If recipient gets [0 0 0 : 1 1 0 : 0 0 0], for instance,
they know an error occurred in second segment.

Second segment should have been 1 1 1, so message can be
corrected.

The cost: requires 3 times as much data to send.

Linear systems



Error-correcting codes
Computer graphics

Naive solution 2

Next idea: sender repeats each bit (0 or 1) in segments of
three.

Data [0 1 0] would be encoded as
[0 0 0 : 1 1 1 : 0 0 0], etc., and sent.

If recipient gets [0 0 0 : 1 1 0 : 0 0 0], for instance,
they know an error occurred in second segment.

Second segment should have been 1 1 1, so message can be
corrected.

The cost: requires 3 times as much data to send.

Linear systems



Error-correcting codes
Computer graphics

Naive solution 2

Next idea: sender repeats each bit (0 or 1) in segments of
three.

Data [0 1 0] would be encoded as
[0 0 0 : 1 1 1 : 0 0 0], etc., and sent.

If recipient gets [0 0 0 : 1 1 0 : 0 0 0], for instance,
they know an error occurred in second segment.

Second segment should have been 1 1 1, so message can be
corrected.

The cost: requires 3 times as much data to send.

Linear systems



Error-correcting codes
Computer graphics

(7, 4) Hamming code

Hamming codes: Richard Hamming 1950

“(7, 4) Hamming code” takes a 4 bit message, encodes it as 7
bits, requiring only 7/4 = 1.75 times as much data.

Can detect and correct single errors.

Setup: say the senders message is x1, x2, x3, x4 (each 0 or 1).
Denote by the vector:

~x =


x1

x2

x3

x4

 .

Linear systems



Error-correcting codes
Computer graphics

(7, 4) Hamming code

Hamming codes: Richard Hamming 1950

“(7, 4) Hamming code” takes a 4 bit message, encodes it as 7
bits, requiring only 7/4 = 1.75 times as much data.

Can detect and correct single errors.

Setup: say the senders message is x1, x2, x3, x4 (each 0 or 1).
Denote by the vector:

~x =


x1

x2

x3

x4

 .

Linear systems



Error-correcting codes
Computer graphics

(7, 4) Hamming code

Hamming codes: Richard Hamming 1950

“(7, 4) Hamming code” takes a 4 bit message, encodes it as 7
bits, requiring only 7/4 = 1.75 times as much data.

Can detect and correct single errors.

Setup: say the senders message is x1, x2, x3, x4 (each 0 or 1).
Denote by the vector:

~x =


x1

x2

x3

x4

 .

Linear systems



Error-correcting codes
Computer graphics

(7, 4) Hamming code

Hamming codes: Richard Hamming 1950

“(7, 4) Hamming code” takes a 4 bit message, encodes it as 7
bits, requiring only 7/4 = 1.75 times as much data.

Can detect and correct single errors.

Setup: say the senders message is x1, x2, x3, x4 (each 0 or 1).
Denote by the vector:

~x =


x1

x2

x3

x4

 .

Linear systems



Error-correcting codes
Computer graphics

Parity

We’ll use addition “mod 2”, meaning:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0,

Linear systems



Error-correcting codes
Computer graphics

How it works

Write the bits in a Venn diagram:

... then fill in the 3 circles with the sum of the bits inside that
circle, taken mod 2.

Linear systems



Error-correcting codes
Computer graphics

How it works

Write the bits in a Venn diagram:

... then fill in the 3 circles with the sum of the bits inside that
circle, taken mod 2.

Linear systems



Error-correcting codes
Computer graphics

Example

If original message is [0 1 0 1], we have

... filled in as?

The sender sends 7 bits: the original four, plus the additional
3 “parity bits” (starting at top left, moving clockwise):

[0 1 0 1 1 0 0] gets sent.

Linear systems



Error-correcting codes
Computer graphics

Example

If original message is [0 1 0 1], we have

... filled in as?

The sender sends 7 bits: the original four, plus the additional
3 “parity bits” (starting at top left, moving clockwise):

[0 1 0 1 1 0 0] gets sent.

Linear systems



Error-correcting codes
Computer graphics

Example

If original message is [0 1 0 1], we have

... filled in as?

The sender sends 7 bits: the original four, plus the additional
3 “parity bits” (starting at top left, moving clockwise):

[0 1 0 1 1 0 0] gets sent.

Linear systems



Error-correcting codes
Computer graphics

Example

If original message is [0 1 0 1], we have

... filled in as?

The sender sends 7 bits: the original four, plus the additional
3 “parity bits” (starting at top left, moving clockwise):

[0 1 0 1 1 0 0] gets sent.

Linear systems



Error-correcting codes
Computer graphics

Correcting errors

Now, recipient gets 7 bits, and fills out the picture in order.
Example:

They check the validity of each parity bit to locate errors.
In which position did error occur?
Corrected message is?

Linear systems



Error-correcting codes
Computer graphics

Correcting errors

Now, recipient gets 7 bits, and fills out the picture in order.
Example:

They check the validity of each parity bit to locate errors.

In which position did error occur?
Corrected message is?

Linear systems



Error-correcting codes
Computer graphics

Correcting errors

Now, recipient gets 7 bits, and fills out the picture in order.
Example:

They check the validity of each parity bit to locate errors.
In which position did error occur?

Corrected message is?

Linear systems



Error-correcting codes
Computer graphics

Correcting errors

Now, recipient gets 7 bits, and fills out the picture in order.
Example:

They check the validity of each parity bit to locate errors.
In which position did error occur?
Corrected message is?

Linear systems



Error-correcting codes
Computer graphics

Matrix formalism: encoding

Say ~x ∈ R4 is original message.

Then G~x ∈ R7 is the 7-bit
version, where

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 1
1 1 0 1
0 1 1 1


.

G is “code generator matrix”

Linear systems



Error-correcting codes
Computer graphics

Matrix formalism: encoding

Say ~x ∈ R4 is original message. Then G~x ∈ R7 is the 7-bit
version, where

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 1
1 1 0 1
0 1 1 1


.

G is “code generator matrix”

Linear systems



Error-correcting codes
Computer graphics

Matrix formalism: encoding

Say ~x ∈ R4 is original message. Then G~x ∈ R7 is the 7-bit
version, where

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 1
1 1 0 1
0 1 1 1


.

G is “code generator matrix”

Linear systems



Error-correcting codes
Computer graphics

Matrix formalism: decoding

Recipient gets some ~c ∈ R7.

To perform error check, what
they do is make sure, that mod 2:

c1 + c3 + c4 + c5 = 0

c1 + c2 + c4 + c6 = 0

c2 + c3 + c4 + c7 = 0.

In other words, they check P~c = ~0 in R3, where

P =

 1 0 1 1 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1

 ,
P is “parity check matrix”.
If P~c 6= ~0, recipient can deduce where error occurred.
G , P can be viewed as linear transformations.
Messages without errors can be thought of as image of G and
kernel of P. How so?

Linear systems



Error-correcting codes
Computer graphics

Matrix formalism: decoding

Recipient gets some ~c ∈ R7. To perform error check, what
they do is make sure, that mod 2:

c1 + c3 + c4 + c5 = 0

c1 + c2 + c4 + c6 = 0

c2 + c3 + c4 + c7 = 0.

In other words, they check P~c = ~0 in R3, where

P =

 1 0 1 1 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1

 ,
P is “parity check matrix”.
If P~c 6= ~0, recipient can deduce where error occurred.
G , P can be viewed as linear transformations.
Messages without errors can be thought of as image of G and
kernel of P. How so?

Linear systems



Error-correcting codes
Computer graphics

Matrix formalism: decoding

Recipient gets some ~c ∈ R7. To perform error check, what
they do is make sure, that mod 2:

c1 + c3 + c4 + c5 = 0

c1 + c2 + c4 + c6 = 0

c2 + c3 + c4 + c7 = 0.

In other words, they check P~c = ~0 in R3, where

P =

 1 0 1 1 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1

 ,

P is “parity check matrix”.
If P~c 6= ~0, recipient can deduce where error occurred.
G , P can be viewed as linear transformations.
Messages without errors can be thought of as image of G and
kernel of P. How so?

Linear systems



Error-correcting codes
Computer graphics

Matrix formalism: decoding

Recipient gets some ~c ∈ R7. To perform error check, what
they do is make sure, that mod 2:

c1 + c3 + c4 + c5 = 0

c1 + c2 + c4 + c6 = 0

c2 + c3 + c4 + c7 = 0.

In other words, they check P~c = ~0 in R3, where

P =

 1 0 1 1 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1

 ,
P is “parity check matrix”.

If P~c 6= ~0, recipient can deduce where error occurred.
G , P can be viewed as linear transformations.
Messages without errors can be thought of as image of G and
kernel of P. How so?

Linear systems



Error-correcting codes
Computer graphics

Matrix formalism: decoding

Recipient gets some ~c ∈ R7. To perform error check, what
they do is make sure, that mod 2:

c1 + c3 + c4 + c5 = 0

c1 + c2 + c4 + c6 = 0

c2 + c3 + c4 + c7 = 0.

In other words, they check P~c = ~0 in R3, where

P =

 1 0 1 1 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1

 ,
P is “parity check matrix”.
If P~c 6= ~0, recipient can deduce where error occurred.

G , P can be viewed as linear transformations.
Messages without errors can be thought of as image of G and
kernel of P. How so?

Linear systems



Error-correcting codes
Computer graphics

Matrix formalism: decoding

Recipient gets some ~c ∈ R7. To perform error check, what
they do is make sure, that mod 2:

c1 + c3 + c4 + c5 = 0

c1 + c2 + c4 + c6 = 0

c2 + c3 + c4 + c7 = 0.

In other words, they check P~c = ~0 in R3, where

P =

 1 0 1 1 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1

 ,
P is “parity check matrix”.
If P~c 6= ~0, recipient can deduce where error occurred.
G , P can be viewed as linear transformations.

Messages without errors can be thought of as image of G and
kernel of P. How so?

Linear systems



Error-correcting codes
Computer graphics

Matrix formalism: decoding

Recipient gets some ~c ∈ R7. To perform error check, what
they do is make sure, that mod 2:

c1 + c3 + c4 + c5 = 0

c1 + c2 + c4 + c6 = 0

c2 + c3 + c4 + c7 = 0.

In other words, they check P~c = ~0 in R3, where

P =

 1 0 1 1 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1

 ,
P is “parity check matrix”.
If P~c 6= ~0, recipient can deduce where error occurred.
G , P can be viewed as linear transformations.
Messages without errors can be thought of as image of G and
kernel of P. How so?

Linear systems



Error-correcting codes
Computer graphics

Displaying 3D graphics

Imagine n points (x1, y1, z1), . . . (xn, yn, zn) ∈ R3, connected
by various line segments:

Viewer located along z-axis.

Imagine points being projected onto a flat screen in z = 0
plane.

Store points as a 3× n matrix:

Linear systems



Error-correcting codes
Computer graphics

Displaying 3D graphics

Imagine n points (x1, y1, z1), . . . (xn, yn, zn) ∈ R3, connected
by various line segments:

Viewer located along z-axis.

Imagine points being projected onto a flat screen in z = 0
plane.

Store points as a 3× n matrix:

Linear systems



Error-correcting codes
Computer graphics

Displaying 3D graphics

Imagine n points (x1, y1, z1), . . . (xn, yn, zn) ∈ R3, connected
by various line segments:

Viewer located along z-axis.

Imagine points being projected onto a flat screen in z = 0
plane.

Store points as a 3× n matrix:

Linear systems



Error-correcting codes
Computer graphics

Displaying 3D graphics

Imagine n points (x1, y1, z1), . . . (xn, yn, zn) ∈ R3, connected
by various line segments:

Viewer located along z-axis.

Imagine points being projected onto a flat screen in z = 0
plane. Store points as a 3× n matrix:

Linear systems



Error-correcting codes
Computer graphics

Views

Straight-on view looks like

Can apply various linear transformations of R3, for instance

Matrix product “SP” means apply S to each column.

Linear systems



Error-correcting codes
Computer graphics

Views

Straight-on view looks like

Can apply various linear transformations of R3, for instance

Matrix product “SP” means apply S to each column.

Linear systems



Error-correcting codes
Computer graphics

Views

Straight-on view looks like

Can apply various linear transformations of R3, for instance

Matrix product “SP” means apply S to each column.

Linear systems



Error-correcting codes
Computer graphics

Scaling example

Here’s an example

Original view was:

In this initial discussion, z coordinate doesn’t factor in directly.

Linear systems



Error-correcting codes
Computer graphics

Scaling example

Here’s an example

Original view was:

In this initial discussion, z coordinate doesn’t factor in directly.

Linear systems



Error-correcting codes
Computer graphics

Rotations

We can also rotate about x , y , and z axes. With θ = π/2:

Linear systems



Error-correcting codes
Computer graphics

Rotations

We can also rotate about x , y , and z axes. With θ = π/2:

Linear systems



Error-correcting codes
Computer graphics

Rotations

We can also rotate about x , y , and z axes. With θ = π/2:

Linear systems



Error-correcting codes
Computer graphics

Rotations

We can also rotate about x , y , and z axes. With θ = π/2:

Linear systems



Error-correcting codes
Computer graphics

Stereoscopic views

By composing x , y , and z rotations, we can create oblique
views on the object.

See handout.

Linear systems



Error-correcting codes
Computer graphics

Stereoscopic views

By composing x , y , and z rotations, we can create oblique
views on the object.

See handout.

Linear systems


	Error-correcting codes
	Computer graphics

