Math 312, Homework 3: selected solutions

Additonal problems

1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be linear tranformations, so $S \circ T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $T \circ S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Let the matrix of T be B and let the matrix of S be A.
(a) Why must there be a vector $\vec{x} \in \mathbb{R}^{3}$ such that $B \vec{x}=0$?
(b) Prove that $A B$ (a 3×3 matrix) can never be invertible.
(c) Give an example to show $B A$ (a 2×2 matrix) may be invertible.

Proof. For (a), you can see this with "free variables", but here's a better approach. The rank of T is at most 2 , since its image lives in \mathbb{R}^{2}. But the rank and nullity of T must add up to 3 , so the nullity is at least 1 . That is, there must be a whole line of vectors that T (or B) sends to $\overrightarrow{0}$.
If B sends a nonzero \vec{x} to zero, then so does $A B$. (Why?) Now, $A B$ is a 3×3 matrix with a nontrivial kernel, so it can't be invertible. (Make sure you understand why.)
Here's a way to find an example. Let S send (x, y) to $(x, y, 0)$, and let T send (x, y, z) to (x, y). Check the details.
2. Are the following subsets of \mathbb{R}^{2} actually subspaces? Explain.
(a) $\{(x, y) \mid x y=0\}$
(b) $\{(x, y) \mid x$ and y are integers $\}$
(c) $\{(x, y) \mid x+y=0\}$
(d) $\{(x, y) \mid x+y \geq 0\}$

Solution: Here are some brief explanations and hints.
(a) is not closed under addition. Consider \vec{e}_{1}, \vec{e}_{2}, and $\vec{e}_{1}+\vec{e}_{2}$.
(b) scale a vector with integer entries by an irrational number, like $\sqrt{2}$.
(c) This is a line through the origin, so it's a subspace. You could write it as the span of $(1,-1)$.
(d) Consider scaling by a negative number.
3. Let T be a linear transformation with trivial kernel. Prove that if $T(\vec{x})=T(\vec{y})$, then $\vec{x}=\vec{y}$. (Hint: use subtraction.) Such transformations T are called one-toone.
Proof: We are told that $T(\vec{x})=T(\vec{y})$, so that $T(\vec{x})-T(\vec{y})=\overrightarrow{0}$. Since T is assumed to be linear, we have $T(\vec{x}-\vec{y})=\overrightarrow{0}$. But since T is assumed to have
trivial kernel, the zero vector is the only vector that T sends to zero. This means $\vec{x}-\vec{y}=\overrightarrow{0}$, which tells us $\vec{x}=\vec{y}$.
By the way, this says that T is a "one-to-one" linear transformation.
4. Prove that if vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly dependent, then one of these vectors is a linear combination of the others.

Solution omitted.
5. Prove that the span of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ in \mathbb{R}^{m} is always a subspace of \mathbb{R}^{m}.

Solution omitted.
6. Say $\vec{v}_{1}, \ldots \vec{v}_{k}$ are linearly independent in \mathbb{R}^{n}. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be linear. Show by example that $T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{k}\right)$ need not be linearly independent. However, prove that these vectors are linearly independent if $\operatorname{ker}(T)$ is trivial.
Solution: Example: T could be project vectors in \mathbb{R}^{3} down to a plane. Or even easier: T could send every vector to zero.
Now, suppose $\operatorname{ker}(T)$ is trivial, and $\vec{v}_{1}, \ldots \vec{v}_{k}$ are linearly independent. The question is: are $T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{k}\right)$ linearly independent? Well, suppose we have scalars c_{i} such that

$$
c_{1} T\left(\vec{v}_{1}\right)+\ldots+c_{k} T\left(\vec{v}_{k}\right)=\overrightarrow{0} .
$$

Using the fact that T is linear tells us

$$
T\left(c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}\right)=\overrightarrow{0}
$$

But here we can use the fact that T has trivial kernel! The vector $c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}$ itself must be the zero vector. In other words, there's a linear combination of the \vec{v}_{i} 's that produces zero. But $\vec{v}_{1}, \ldots \vec{v}_{k}$ are linearly independent, so the c_{i} 's must all be zero.
Finally, this tells us $T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{k}\right)$ linearly independent. (Make sure you understand why.)
7. Use Theorems from section 3.3 (or from class) to explain carefully why if V and W are subspaces with V contained inside of W, then $\operatorname{dim} V \leq \operatorname{dim} W$.

Proof. Let $\vec{v}_{1}, \ldots, \vec{v}_{p}$ be a basis of V, and let $\vec{w}_{1}, \ldots, \vec{w}_{q}$ be a basis of W. This tells us p is the dimension of V and q is the dimension of W.
Let's use a theorem from the book or class. In our setting, we have a subspace W, with a linearly independent set $\vec{v}_{1}, \ldots, \vec{v}_{p}$ and a spanning set $\vec{w}_{1}, \ldots, \vec{w}_{q}$. (Why?) The theorem says $p \leq q$. That's it!

