
Math 312, Homework 3: selected solutions

Additonal problems

1. Let T : R3 → R2 and S : R2 → R3 be linear tranformations, so S ◦ T : R3 → R3

and T ◦ S : R2 → R2. Let the matrix of T be B and let the matrix of S be A.

(a) Why must there be a vector ~x ∈ R3 such that B~x = 0?

(b) Prove that AB (a 3× 3 matrix) can never be invertible.

(c) Give an example to show BA (a 2× 2 matrix) may be invertible.

Proof. For (a), you can see this with “free variables”, but here’s a better ap-
proach. The rank of T is at most 2, since its image lives in R2. But the rank and
nullity of T must add up to 3, so the nullity is at least 1. That is, there must be
a whole line of vectors that T (or B) sends to ~0.

If B sends a nonzero ~x to zero, then so does AB. (Why?) Now, AB is a
3 × 3 matrix with a nontrivial kernel, so it can’t be invertible. (Make sure you
understand why.)

Here’s a way to find an example. Let S send (x, y) to (x, y, 0), and let T send
(x, y, z) to (x, y). Check the details.

2. Are the following subsets of R2 actually subspaces? Explain.

(a) {(x, y) | xy = 0}
(b) {(x, y) | x and y are integers}
(c) {(x, y) | x + y = 0}
(d) {(x, y) | x + y ≥ 0}

Solution: Here are some brief explanations and hints.

(a) is not closed under addition. Consider ~e1, ~e2, and ~e1 + ~e2.

(b) scale a vector with integer entries by an irrational number, like
√

2.

(c) This is a line through the origin, so it’s a subspace. You could write it as the
span of (1,−1).

(d) Consider scaling by a negative number.

3. Let T be a linear transformation with trivial kernel. Prove that if T (~x) = T (~y),
then ~x = ~y. (Hint: use subtraction.) Such transformations T are called one-to-
one.

Proof : We are told that T (~x) = T (~y), so that T (~x) − T (~y) = ~0. Since T is
assumed to be linear, we have T (~x − ~y) = ~0. But since T is assumed to have
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trivial kernel, the zero vector is the only vector that T sends to zero. This means
~x− ~y = ~0, which tells us ~x = ~y.

By the way, this says that T is a “one-to-one” linear transformation.

4. Prove that if vectors ~v1, . . . , ~vn are linearly dependent, then one of these vectors
is a linear combination of the others.

Solution omitted.

5. Prove that the span of vectors ~v1, . . . , ~vk in Rm is always a subspace of Rm.

Solution omitted.

6. Say ~v1, . . . ~vk are linearly independent in Rn. Let T : Rn → Rm be linear. Show
by example that T (~v1), . . . , T (~vk) need not be linearly independent. However,
prove that these vectors are linearly independent if ker(T ) is trivial.

Solution: Example: T could be project vectors in R3 down to a plane. Or even
easier: T could send every vector to zero.

Now, suppose ker(T ) is trivial, and ~v1, . . . ~vk are linearly independent. The ques-
tion is: are T (~v1), . . . , T (~vk) linearly independent? Well, suppose we have scalars
ci such that

c1T (~v1) + . . . + ckT (~vk) = ~0.

Using the fact that T is linear tells us

T (c1~v1 + . . . + ck~vk) = ~0.

But here we can use the fact that T has trivial kernel! The vector c1~v1+. . .+ck~vk

itself must be the zero vector. In other words, there’s a linear combination of the
~vi’s that produces zero. But ~v1, . . . ~vk are linearly independent, so the ci’s must
all be zero.

Finally, this tells us T (~v1), . . . , T (~vk) linearly independent. (Make sure you un-
derstand why.)

7. Use Theorems from section 3.3 (or from class) to explain carefully why if V and
W are subspaces with V contained inside of W , then dim V ≤ dim W .

Proof. Let ~v1, . . . , ~vp be a basis of V , and let ~w1, . . . , ~wq be a basis of W . This
tells us p is the dimension of V and q is the dimension of W .

Let’s use a theorem from the book or class. In our setting, we have a subspace W ,
with a linearly independent set ~v1, . . . , ~vp and a spanning set ~w1, . . . , ~wq. (Why?)
The theorem says p ≤ q. That’s it!
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