Math 312, Fall 2012

Problem Set 1

DUE: In class Thursday, Sept. 13. Late papers will be accepted until 1:00 PM Friday.

These problems are intended to be straightforward with not much computation.

- 1. Let $S := \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$.
 - a) Find S^{-1} .
 - b) For which constant(s) λ is the matrix $\begin{pmatrix} 2-\lambda & 5\\ 1 & 3-\lambda \end{pmatrix}$ invertible?
 - c) Let $D := \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}$ and $B := SDS^{-1}$. Compute B^{10} .
- 2. Solve all of the following equations. [Note that the left sides of these equations are identical.]

a).
$$2x + 5y = 5$$
 b). $2x + 5y = 0$ c). $2x + 5y = 1$ d). $2x + 5y = 2$
 $x + 3y = -1$ $x + 3y = -2$ $x + 3y = 0$ $x + 3y = 1$

- 3. Let A and B be 2×2 matrices.
 - a) If B is invertible and AB = 0, show that A = 0.
 - b) Give and example where AB = 0 but $BA \neq 0$.
 - c) Find an example of a 2×2 matrix with the property that $A^2 = 0$ but $A \neq 0$.
- 4. Consider the system of equations

$$\begin{array}{rcl} x+y-z&=&a\\ x-y+2z&=&b\\ 3x+y&=&c \end{array}$$

- a) Find the general solution of the homogeneous equation.
- b) If a = 1, b = 2, and c = 4, then a particular solution of the inhomogeneous equations is x = 1, y = 1, z = 1. Find the most general solution of these inhomogeneous equations.
- c) If a = 1, b = 2, and c = 3, show these equations have no solution.
- d) If a = 0, b = 0, c = 1, show the equations have *no* solution. [Note: $\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}\\ \frac{2}{4} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\\ \frac{3}{3} \end{pmatrix}$].

- 5. a) Find a real 2×2 matrix A (other than $A = \pm I$) such that $A^2 = I$.
 - b) Find a real 2×2 matrix A such that $A^4 = I$ but $A^2 \neq I$.
- 6. Let L, M, and P be linear maps from the (two dimensional) plane to the plane:
 - L is rotation by 90 degrees counterclockwise.
 - M is reflection across the vertical axis
 - Nv := -v for any vector $v \in \mathbb{R}^2$ (reflection across the origin)
 - a) Find matrices representing each of the linear maps L, M, and N.
 - b) Draw pictures describing the actions of the maps L, M, and N and the compositions: LM, ML, LN, NL, MN, and NM.
 - c) Which pairs of these maps commute?
 - d) Which of the following identities are correct—and why?

1[Last revised: January 10, 2013]