Problem Set 10 Due: Never.

- 1. [BRETSCHER, SEC. 7.1 #12] Find the eigenvalues and eigenvectors of $A := \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix}$.
- 2. [BRETSCHER, P. 318, SEC. 7.2 #28] [Problem on Markov Chains].
- 3. If \vec{v} is an eigenvector of the matrix A, show that it is also an eigenvector of A + 37I. What is the corresponding eigenvalue?
- 4. Let A be an invertible matrix. Show that $\lambda = 0$ cannot be an eigenvalue. Conversely, if a (square) matrix is not invertible, show that $\lambda = 0$ is an eigenvalue.
- 5. Let z = x + iy be a complex number. For which real numbers x, y is $|e^z| < 1$?
- 6. Let M be a 4×4 matrix of real numbers. If you know that both 1 + 2i and 2 i are eigenvalues of M, is M diagonalizable? Proof or counterexample.
- 7. Let A and B be $n \times n$ real positive definite matrices and let C := tA + (1 t)B. If $0 \le t \le 1$, show that C is also positive definite. [This is simple. No "theorems" are needed.]

8. Let
$$A := \begin{pmatrix} 3 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
.

- a) Find the eigenvalues and eigenvectors of A.
- b) Find an orthogonal transformation R so that $R^{-1}AR$ is a diagonal matrix.

9. If
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
, solve $\frac{d\vec{x}}{dt} = A\vec{x}$ with initial condition $\vec{x}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

10. Let A and B be any 3×3 matrices. Show that trace (AB) = trace(BA). [This is also true for $n \times n$ matrices.]

Use this to give another proof that if the matrices M and Q are similar, then trace(M) = trace(Q).

11. Let $A := \begin{pmatrix} 1/4 & 1/2 \\ 3/4 & 1/2 \end{pmatrix}$.

- a) Compute A^{50} .
- b) Let $P_0 := \begin{pmatrix} p \\ q \end{pmatrix}$ where p > 0 and q > 0 with p + q = 1. Compute $A^{50}P_0$. What do you suspect $\lim_{k \to \infty} A^k P_0 = ?$.
- c) Note that A is the transition matrix of a Markov process. What do you suspect is the long-term stable state? Verify your suspicion.
- 12. Let A be a 3×3 matrix whose eigenvalues are $-1 \pm i$ and -2. If $\vec{x}(t)$ is a solution of $\frac{d\vec{x}}{dt} = A\vec{x}$, show that $\lim_{t\to\infty} \vec{x}(t) = 0$ independent of the initial value $\vec{x}(0)$.
- 13. a) If $B := \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$, find a self adjoint matrix Q so that $Q^2 = B$. [This should be obvious.]
 - b) If $A := \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$, find a self adjoint matrix P so that $P^2 = A$.
- 14. Let $A := \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$. Solve $\frac{d^2 \vec{x}(t)}{dt^2} + A \vec{x}(t) = 0$ with $\vec{x}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\vec{x}'(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. [REMARK: If A were the diagonal matrix $\begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$, then this problem would have been simple.]
- 15. Let A be an $n \times n$ matrix that commutes with all $n \times n$ matrices, so AB = BA for all matrices B. Show that A = cI for some scalar c. [SUGGESTION: Let \vec{v} be an eigenvector of A with eigenvalue λ].

[Last revised: December 3, 2012]