Problem Set 10

Due: Never.

1. [Bretscher, Sec. 7.1 \#12] Find the eigenvalues and eigenvectors of $A:=\left(\begin{array}{ll}2 & 0 \\ 3 & 4\end{array}\right)$.
2. [Bretscher, P. 318,SEc. 7.2 \#28] [Problem on Markov Chains].
3. If \vec{v} is an eigenvector of the matrix A, show that it is also an eigenvector of $A+37 I$. What is the corresponding eigenvalue?
4. Let A be an invertible matrix. Show that $\lambda=0$ cannot be an eigenvalue.

Conversely, if a (square) matrix is not invertible, show that $\lambda=0$ is an eigenvalue.
5. Let $z=x+i y$ be a complex number. For which real numbers x, y is $\left|e^{z}\right|<1$?
6. Let M be a 4×4 matrix of real numbers. If you know that both $1+2 i$ and $2-i$ are eigenvalues of M, is M diagonalizable? Proof or counterexample.
7. Let A and B be $n \times n$ real positive definite matrices and let $C:=t A+(1-t) B$. If $0 \leq t \leq 1$, show that C is also positive definite. [This is simple. No "theorems" are needed.]
8. Let $A:=\left(\begin{array}{llll}3 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
a) Find the eigenvalues and eigenvectors of A.
b) Find an orthogonal transformation R so that $R^{-1} A R$ is a diagonal matrix.
9. If $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$, solve $\frac{d \vec{x}}{d t}=A \vec{x}$ with initial condition $\vec{x}(0)=\binom{1}{0}$.
10. Let A and B be any 3×3 matrices. Show that trace $(A B)=\operatorname{trace}(B A)$. [This is also true for $n \times n$ matrices.]
Use this to give another proof that if the matrices M and Q are similar, then trace (M) $=\operatorname{trace}(Q)$.
11. Let $A:=\left(\begin{array}{ll}1 / 4 & 1 / 2 \\ 3 / 4 & 1 / 2\end{array}\right)$.
a) Compute A^{50}.
b) Let $P_{0}:=\binom{p}{q}$ where $p>0$ and $q>0$ with $p+q=1$. Compute $A^{50} P_{0}$. What do you suspect $\lim _{k \rightarrow \infty} A^{k} P_{0}=$?
c) Note that A is the transition matrix of a Markov process. What do you suspect is the long-term stable state? Verify your suspicion.
12. Let A be a 3×3 matrix whose eigenvalues are $-1 \pm i$ and -2 . If $\vec{x}(t)$ is a solution of $\frac{d \vec{x}}{d t}=A \vec{x}$, show that $\lim _{t \rightarrow \infty} \vec{x}(t)=0$ independent of the initial value $\vec{x}(0)$.
13. a) If $B:=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right)$, find a self adjoint matrix Q so that $Q^{2}=B$. [This should be obvious.]
b) If $A:=\left(\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right)$, find a self adjoint matrix P so that $P^{2}=A$.
14. Let $A:=\left(\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right)$. Solve $\frac{d^{2} \vec{x}(t)}{d t^{2}}+A \vec{x}(t)=0$ with $\vec{x}(0)=\binom{1}{0}$ and $\vec{x}^{\prime}(0)=\binom{0}{0}$. [REMARK: If A were the diagonal matrix $\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right)$, then this problem would have been simple.]
15. Let A be an $n \times n$ matrix that commutes with all $n \times n$ matrices, so $A B=B A$ for all matrices B. Show that $A=c I$ for some scalar c. [Suggestion: Let \vec{v} be an eigenvector of A with eigenvalue $\lambda]$.
[Last revised: December 3, 2012]

