
Math 312, Fall 2012 Jerry L. Kazdan

Problem Set 10

Due: Never.

1. [Bretscher, Sec. 7.1 #12] Find the eigenvalues and eigenvectors of A :=

�
2 0
3 4

�
.

Solution: Since A is lower triangular, the eigenvalues are clearly �1 = 2 and �2 = 4.

The corresponding eigenvectors are ~v1 =

�
2

�3
�

and ~v2 =

�
0
1

�
.

2. [Bretscher, p. 318,Sec. 7.2 #28] The isolated Swiss town inhabited by 1,200
families had only one grocery store owned by Mr. and Ms. Wipf. Each family made
a weekly shopping trip. Recently a fancier (and cheaper) chain store, Migros opened.
It is anticipated that 20% of the Wipf shoppers each week will switch to Migros the
following week. However some people who switch will miss the personal service and
switch back to Wipf the following week. Let wk be the number of families who shop
at Wipf's and mk the number who shop at Migros k weeks after Migros opened, so
w0 = 1; 200 and m0 = 0. This describes a Markov Chain whose state is described by
the vector

~xk :=

�
wk

mk

�
:

a) Find a 2� 2 transition matrix A so that ~xk+1 = A~xk .

Solution: A =

�
:8 :1
:2 :9

�

b) How many families will shop at each store after k weeks? Give closed formulas.

Solution: Since ~xk = Ak~x0 , we need to compute Ak . For this we diagonalize
A . Since A is the transition matrix of a Markov process, one of the eigenvalues
is �1 = 1 For the eigenvalues, we see that trace(A) = 1:7, then � � 2 = :7. The

corresponding eigenvectors are ~v1 =

�
1
2

�
and ~v2 =

�
1
�1
�
. If we use the change of

coordinates S :=

�
1 1
2 �1

�
, then A is similar to the diagonal matrix D =

�
1 0
0 :7

�
,

S�1AS = D so Ak = SDkS�1 . Since S�1 = 1

3

�
1 1
2 �1

�
, by a straightforward

computation

~xk = SDkS�1~x0 = 400

�
1 + 2(:7)k

2� 2(:7)k

�
!
�
400
800

�
:

c) The Wipfs expect that they must close down when they have fewer than 250 cus-
tomers a week. When does that happen?

Solution: From the above, wk = 400(1 + 2(:7)k)& 400, so wk > 400 which is
larger than the critical 350.
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3. If ~v is an eigenvector of the matrix A , show that it is also an eigenvector of A+ 37I .
What is the corresponding eigenvalue?

Solution: (A + 37I)~v = A~v + 37~v = (� + 37)~v so the corresponding eigenvalue is
�+ 37.

4. Let A be an invertible matrix. Show that � = 0 cannot be an eigenvalue.

Conversely, if a (square) matrix is not invertible, show that � = 0 is an eigenvalue.

Solution: If � = 0 were an eigenvalue, then there is a ~v 6= 0 so that A~v = 0. But
then A would not be one-to-one.

Conversely, if 0 is not an eigenvalue, then the kernel of A is just the zero vector.

5. Let z = x+ iy be a complex number. For which real numbers x , y is jezj < 1?

Solution: Since ez = ex+iy = exeiy and jeiy = 1j , then jezj = ex . This is less than
1 for all x < 0.

6. Let M be a 4� 4 matrix of real numbers. If you know that both 1 + 2i and 2� i are
eigenvalues of M , is M diagonalizable? Proof or counterexample.

Solution: Since the matrix has only real elements, the complex conjugates. 1 � 2i
and 2 + i of these complex numbers are also eigenvalues. Thus M has 4 distinct
eigenvalues and thus is diagonalizable.

7. Let A and B be n � n real positive de�nite matrices and let C := tA + (1 � t)B . If
0 � t � 1, show that C is also positive de�nite. [This is simple. No \theorems" are
needed.]

Solution: Since 0 � t � 1, if ~x 6= 0 then

h~x; C~xi =h~x; [tA+ (1� t)B]~xi = th~x; A~xi+ (1� t)h~x; B~xi > 0 :

8. Let A :=

0
BB@
3 0 1 0
0 1 0 0
1 0 3 0
0 0 0 1

1
CCA .

a) Find the eigenvalues and eigenvectors of A .
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Solution:

det(A� �I) =(1� �) det

0
@3� � 0 1

0 1� � 0
1 0 3� �

1
A

=(1� �)2 det

�
3� � 1
1 3� �

�

=(1� �)2
�
(3� �)2 � 1

�
= (1� �)2(�� 2)(�� 4):

Thus the eigenvalues are �1 = 1, �2 = 1, �3 = 2, and �4 = 4.

To �nd the eigenvectors corresponding to � = 1 we want non-trivial solutions
~x := (x1; x2; x3; x4) of the equations (A� I)~x = 0, that is,

2x1 + 0x2 + x3 + 0x4 =0

x1 + 0x2 + 2x3 + 0x4 =0:

These imply x1 = x3 = 0 but x2 and x4 can be anything; every point of the form
(0; x2; 0; x4) is an eigenvector with eigenvalue 1. We pick a simple orthonormal
basis of this space as the eigenvectors: ~v1 = (0; 1; 0; 0) and ~v2 = (0; 0; 0; 1).

For the eigenvalue �3 = 2 it is straightforward to �nd the eigenvector ~v3 =
(1; 0;�1; 0) while �4 = 4 we get ~v4 = (1; 0; 1; 0).

b) Find an orthogonal transformation R so that R�1AR is a diagonal matrix.

Solution: The eigenvectors ~v1 , ~v2 , ~v3 , and ~v4 are already orthogonal, mainly
because for a symmetric matrix such as A , they are eigenvectors corresponding to
distinct eigenvalues. However, the orthogonality of ~v1 and ~v2 was because we could
have chosen any linearly independent vectors in this eigenspace so for simplicity we
chose orthogonal vectors. To make these orthonormal we need only adjust them so
that they are unit vectors. Only ~v3 and ~v4 need to be �xed. We replace them by
~w3 := ~v3=

p
2 and ~w4 := ~v4=

p
2 and then use ~v1 , ~v2 , ~w3 , and ~w4 as the columns

of the matrix R .

9. If A =

�
1 2
2 1

�
, solve

d~x

dt
= A~x with initial condition ~x(0) =

�
1
0

�
.

Solution: We �rst diagonalize A . Its eigenvalues and corresponding eigenvectors

are �1 = 3, �2 = �1, ~v1 =
�
1
1

�
, and ~v2 =

�
1

�1
�
. Use the eigenvectors of A as the

columns of the change of coordinates matrix S =

�
1 1
1 �1

�
. Then A = SDS�1 , where

D =

�
3 0
0 �1

�
.

Thus
d~x

dt
= SDS�1~x so

dS�1~x

dt
= DS�1~x:
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Make the change of variable ~y := S�1~x . Then
d~y

dt
= D~y , that is,

y01 = 3y1

y02 = �y2:
Because D is a diagonal matrix, this system of di�erential equations is uncoupled ; the
�rst involves only y1 and the second only y2 . The solution is clearly y1(t) = �e3t ,
y2(t) = �e�t for any constants � and � . Thus we now know that

~x(t) = S~y(t) =

�
1 1
1 �1

��
�e3t

�e�t

�
=

�
�e3t + �e�t

�e3t � �e�t

�
:

As the �nal step we pick � and � so that ~x(t) satis�es the initial condition on ~x(0):�
1
0

�
= ~x(0) =

�
�+ �
�� �

�

so � = � = 1=2. In summary:

~x(t) = 1

2

�
e3t + e�t

e3t � e�t

�

10. Let A and B be any 3�3 matrices. Show that trace (AB) = trace (BA). [This is also
true for n� n matrices.]

Solution: If A =
�
aij
�
and B =

�
bij
�
, let C = AB . Say (AB)ik is the ik element

in the matrix AB. Then the rule for matrix multiplication gives

(AB)ik =
nX

j=1

aijbjk:

Consequently

trace(AB) =
nX

i=1

(AB)ii =
nX

i=1

� nX
j=1

aijbji

�
:

Similarly

trace(BA) =
nX

i=1

(BA)ii =
nX

i=1

� nX
j=1

bijaji

�
:

Since i and j are dummy indices of summation, interchanging them in the formula for
the trace of BA shows that trace (AB) = trace (BA).

Use this to give another proof that if the matrices M and Q are similar, then trace(M)
= trace(Q).

Solution: If M and Q are similar, then there is an invertible matrix S so that
Q = S�1MS . Therefore

traceQ = trace (S�1MS) = trace
�
S�1(MS)

�
= trace

�
(MS)S�1

�
= traceM:
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11. Let A :=

�
1=4 1=2
3=4 1=2

�
.

a) Compute A50 .

Solution: Since A is the transition matrix for a Markov chain, �1 = 1. Since the
trace of A is 3=4, then �2 = �1=4. By a routine computation, the corresponding

eigenvectors are ~v1 =

�
2
3

�
and ~v2 =

�
1

�1
�
. Let S = ( 2 1

3 �1
) be the matrix

whose columns are these eigenvectors and let D = ( 1 0

0 �1=4 ). Then A = SDS�1 .
Therefore

A50 = SD50S�1 =

�
2 1
3 �1

��
1 0
0 (�1=4)50

��
1=5 1=5
3=5 �2=5

�

=1

5

�
2 + 3=450 2� 2=450

3� 3=450 3 + 2=450

�
:

b) Let P0 :=

�
p
q

�
where p > 0 and q > 0 with p + q = 1. Compute A50P0 . What

do you suspect limk!1AkP0 =?.

Solution: A50P0 =
1

5

�
2 + (5p� 2)=450

3� (5p� 2)=450

�
.

One sees that AkP0 !
�
2=5
3=5

�
.

c) Note that A is the transition matrix of a Markov process. What do you suspect is
the long-term stable state? Verify your suspicion.

Solution: The above limiting is exactly the probability vector associated with
the long-term stable state.

12. Let A be a 3� 3 matrix whose eigenvalues are�1� i and �2. If ~x(t) is a solution of
d~x

dt
= A~x , show that limt!1 ~x(t) = 0 independent of the initial value ~x(0).

Solution: Since the eigenvalues of A are distinct, A can be diagonalized. Thus for
some invertible matrix S we know that A = SDS�1 , where D is a diagonal matrix

consisting of the eigenvalues �j of A . Thus
d~x

dt
= SDS�1~x . Just as in Problem 9

above, multiply both sides on the left by S�1 and let ~y(t) = S�1~x(t). Then
d~y

dt
= D~y .

Therefore the components yj(t) of ~y satisfy the uncoupled equations y0j(t) = �jyj whose

solutions are yj(t) = cje
�jt Since the real parts of the eigenvalues are all negative, by

Problem 5 above, then jyj(t)j ! 0 as t!1 . However, ~x(t) = S~y(t) so also k~x(t)k ! 0
as t!1 .
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13. a) If B :=

�
9 0
0 1

�
, �nd a self adjoint matrix Q so that Q2 = B . [This should be

obvious.]

Solution: Let Q =

�
3 0
0 1

�
.

b) If A :=

�
5 4
4 5

�
, �nd a self adjoint matrix P so that P 2 = A .

Solution: The eigenvalues of A are �1 = 9 and �2 = 1. Therefore A is similar,
by an orthogonal transformation R , to the matrix B in part a):

A = RBR�1 = RQ2R�1 =
�
RQR�1

� �
RQR�1

�
= P 2;

where P = RQR�1 . Note that P is self-adjoint (since R�1 = R� ) and positive
de�nite since we take the positive square root of the eigenvalues of A .

In this speci�c problem, to determine R explicitly we need the eigenvectors of A .

For �1 = 9 the eigenvector ~v1 =

�
1
1

�
while for �2 = 1 the eigenvector ~v2 =

�
1

�1
�
.

To get the columns of the orthogonal transformation R we replace the ~vj by unit
vectors, so

R :=
1p
2

�
1 1
1 �1

�
:

Thus, A = P 2 where

P := RQR�1 =
1p
2

�
1 1
1 �1

��
3 0
0 1

�
1p
2

�
1 1
1 �1

�
=

�
2 1
1 2

�
:

The identical proof shows that every positive de�nite real matrix has a unique
positive de�nite \square root."

14. Let A :=

�
5 4
4 5

�
. Solve

d2~x(t)

dt2
+ A~x(t) = 0 with ~x(0) =

�
1
0

�
and ~x 0(0) =

�
0
0

�
.

[Remark: If A were the diagonal matrix

�
9 0
0 1

�
, then this problem would have been

simple.]

Solution: The procedure is essentially identical to that used in Problem 9. Begin
by diagonalizing A . We have already done the hard work in the previous problem:

A = RBR�1 , where B =

�
9 0
0 1

�
. The di�erential equation is then

d2~x(t)

dt2
+RBR�1~x(t) = 0:
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Multiply this on the left by R�1 and make the change of variable ~y(t) := R�1~x(t). The
di�erential equation then is

d2~y(t)

dt2
+B~y(t) = 0:

Since B is a diagonal matrix, this system of equations is uncoupled :

y001 + 9y1 = 0 and y002 + y2 = 0:

The solution to these are

y1(t) = a cos 3t+ b sin 3t; and y2(t) = c cos t+ d sin t;

where a , b , c , and d are any constants. Now that we know ~y(t) we can get ~x(t) from

~x(t) = R~y =
1p
2

�
1 1
1 �1

��
a cos 3t+ b sin 3t
c cos t+ d sin t

�

=
1p
2

�
a cos 3t+ b sin 3t+ c cos t+ d sin t
a cos 3t+ b sin 3t� c cos t� d sin t

�

At this point, we absorb the
p
2 factor into the still unknown coe�cients a , b , c , and

d which we will determine using the initial conditions.

�
1
0

�
= ~x(0) =

�
a+ c
a� c

�
;

�
0
0

�
= ~x 0(0) =

�
3b+ d
3b� d

�
:

Thus a = c = 1=2 and b = d = 0 so

~x(t) =
1

2

�
cos 3t+ cos t
cos3t� cos t

�
:

Note that the same technique works if A is not self-adjoint { as long as it is diago-
nalizable. Of course in this case the change of variables will not be by an orthogonal
matrix.

15. Let A be an n � n matrix that commutes with all n � n matrices, so AB = BA for
all matrices B . Show that A = cI for some scalar c . [Suggestion: Let ~v be an
eigenvector of A with eigenvalue � ].

Solution: For this we need a preliminary result that is almost obvious.

Let ~e1 = (1; 0; 0; : : : ; 0) 2 Rn and let ~v and ~w be any non-zero vectors in Rn . Then
there is an invertible matrix B with B~e1 = ~w .

To see this, let the �rst column of B be the vector ~w and for the remaining columns
use any vectors that extend ~w to a basis for Rn . For instance, if the �rst component
of ~w is not zero, you can use the standard basis vectors ~e2 ,. . . , ~en for the remaining
columns of B .
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More generally, there is an invertible matrix M with M~v = ~w . This is now easy. Let
A be an invertible matrix that maps ~e1 to ~v . Then let M := BA�1 .

Now back to the original problem. Let ~v be an eigenvector of A with eigenvalue � .
Then A~v = �~v . But then

A(B~v) = BA~v = �(B~v):

In other words, every vector of the form B~v for some invertible matrix B is an eigen-
vector of A with the same eigenvalue � . But in the preliminaries we showed that given
any non-zero vector ~w there is an invertible B such that ~w = B~v .

[Last revised: December 10, 2012]
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