Problem Set 1

Due: In class Thursday, Sept. 13. Late papers will be accepted until 1:00 PM Friday.
These problems are intended to be straightforward with not much computation.

1. Let $S:=\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)$.
a) Find S^{-1}.
b) For which constant(s) λ is the matrix $\left(\begin{array}{cc}2-\lambda & 5 \\ 1 & 3-\lambda\end{array}\right)$ invertible?

Solution: Finding the inverse means solving the equations

$$
\begin{aligned}
(2-\lambda) x_{1}+5 x_{2} & =y_{1} \\
x_{1}+(3-\lambda) x_{2} & =y_{2}
\end{aligned}
$$

Multiply the second equation by $2-\lambda$ and subtract it from the first equation to get the equivalent system

$$
\begin{aligned}
{[5-(2-\lambda)(3-\lambda)] x_{2} } & =y_{1}-(2-\lambda) y_{2} \\
x_{1}+(3-\lambda) x_{2} & =y_{2}
\end{aligned}
$$

The first equation is always solvable for x_{2} unless $5-(2-\lambda)(3-\lambda)=0$. This is a quadratic equation for λ.
c) Let $D:=\left(\begin{array}{rr}-1 & 0 \\ 0 & 3\end{array}\right)$ and $B:=S D S^{-1}$. Compute B^{10}. Solution: $B^{2}=\left(S D S^{-1}\right)\left(S D S^{-1}\right)=S D^{2} S^{-1}, \ldots, B^{10}=S D^{10} S^{-1}$. This is easy to compute since D is a diagonal matrix so $D^{10}=\left(\begin{array}{cc}(-1)^{10} & 0 \\ 0 & 3^{10}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & 3^{10}\end{array}\right)$
2. Solve all of the following equations. [Note that the left sides of these equations are identical.]
a). $2 x+5 y=5$
$x+3 y=-1$
b). $2 x+5 y=0$
$x+3 y=-2$
c). $2 x+5 y=1$
$x+3 y=0$
d). $2 x+5 y=2$
$x+3 y=1$

Solution: All of these have the form $S \vec{v}=\vec{b}$ where S is the matrix whose inverse you computed in Problem 1a). Thus $\vec{v}=S^{-1} \vec{b}$ where \vec{b} is the right hand side of each of these equations. The computation is now very short.
3. Let A and B be 2×2 matrices.
a) If B is invertible and $A B=0$, show that $A=0$.

Solution: Multiply the equation on the right by B^{-1} to get $A=A B B^{-1}=0$.
b) Give and example where $A B=0$ but $B A \neq 0$.

Solution Let $A:=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ and $B:=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
c) Find an example of a 2×2 matrix with the property that $A^{2}=0$ but $A \neq 0$.

Solution Let $A:=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
4. Consider the system of equations

$$
\begin{aligned}
x+y-z & =a \\
x-y+2 z & =b \\
3 x+y & =c
\end{aligned}
$$

a) Find the general solution of the homogeneous equation.
b) If $a=1, b=2$, and $c=4$, then a particular solution of the inhomogeneous equations is $x=1, y=1, z=1$. Find the most general solution of these inhomogeneous equations.
c) If $a=1, b=2$, and $c=3$, show these equations have no solution.
d) If $a=0, b=0, c=1$, show the equations have no solution. [Note: $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=$ $\left.\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)-\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right]$.
Solution If you can solve the equation $A \vec{u}=\vec{w}$ and you cannot solve the equation $A \vec{v}=\vec{r}$, then you cannot solve the equation $A \vec{z}=\vec{w}-\vec{r}$ since if you could, then $\vec{v}=\vec{u}-\vec{w}$ would be a solution of $A \vec{v}=\vec{r}$.
5. a) Find a real 2×2 matrix A (other than $A= \pm I$) such that $A^{2}=I$.

Solution A reflection, say across the vertical axis: $A:=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$
b) Find a real 2×2 matrix A [other than $A= \pm I$ and your answer to Part a)] such that $A^{4}=I$.

Solution A rotation by 90 degrees $(\pi / 2) . \quad A:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
6. Let L, M, and P be linear maps from the (two dimensional) plane to the plane:
L is rotation by 90 degrees counterclockwise.
M is reflection across the vertical axis
$N v:=-v$ for any vector $v \in \mathbb{R}^{2}$ (reflection across the origin)
a) Find matrices representing each of the linear maps L, M, and N.
b) Draw pictures describing the actions of the maps L, M, and N and the compositions: $L M, M L, L N, N L, M N$, and $N M$.

Solution Note that $L M$ is the map $L M(\vec{x}):=L(M \vec{x})$ means you first apply M to \vec{x} and then apply L to the result. Thus $L M$ means first reflect across the vertical axis and then rotate by 90 degrees counterclockwise.
c) Which pairs of these maps commute?
d) Which of the following identities are correct-and why?

1) $L^{2}=N$
2) $\quad N^{2}=I$
3)

$L^{4}=I$
4) $\quad L^{5}=L$
5) $M^{2}=I$
6) $\quad M^{3}=M$
7) $M N M=N$
8) $N M N=L$

1[Last revised: September 28, 2012]

