Problem Set 3

DUE: In class Thursday, Sept. 27 Late papers will be accepted until 1:00 PM Friday.

These problems are intended to be straightforward with not much computation.

- 1. [BRETSCHER, SEC. 2.4 #37]. If A is an invertible matrix and $c \neq 0$ is a scalar, is the matrix cA invertible? If so, what is the relationship between A^{-1} and $(cA)^{-1}$?
- 2. [BRETSCHER, SEC. 2.4 # 40].
 - a) If a matrix has two equal rows, show that it is not onto and thus not invertible.
 - b) If a matrix has two equal columns, show that it is not one-to-one and thus not invertible.
- 3. [BRETSCHER, SEC. 2.4 #52]. Let $A := \begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 3 & 6 \\ 1 & 4 & 8 \end{pmatrix}$. Find a vector \vec{b} in \mathbb{R}^4 such that

the system $A\vec{x} = \vec{b}$ is inconsistent, that is, it has no solution.

- 4. Find a real 2×2 matrix A (with $A^2 \neq I$ and $A^3 \neq I$) so that $A^6 = I$. For your example, is A^4 invertible?
- 5. Let $\vec{e}_1 = (1, 0, 0, \dots, 0) \in \mathbb{R}^n$ and let \vec{v} and \vec{w} be any non-zero vectors in \mathbb{R}^n .
 - a) Show there is an invertible matrix B with $B\vec{e}_1 = \vec{v}$.
 - b) Show there is an invertible matrix M with $M\vec{w} = \vec{v}$.
- 6. Let A, B, and C be $n \times n$ matrices with A and C invertible. Solve the equation ABC = I A for B.
- 7. [BRETSCHER, SEC. 2.4 #67, 68, 69, 70, 71, 73] Let A and B, be invertible $n \times n$ matrices. Which of the following are True? If False, find a counterexample.
 - a) $(A+B)^2 = A^2 + 2AB + B^2$
 - b) A^2 is invertible and $(A^2)^{-1} = (A^{-1})^2$
 - c) A + B is invertible and $(A + B)^{-1} = A^{-1} + B^{-1}$
 - d) $(A B)(A + B) = A^2 B^2$
 - e) $ABB^{-1}A^{-1} = I$
 - f) $(ABA^{-1})^3 = AB^3A^{-1}$.

- 8. [SIMILAR TO BRETSCHER, SEC. 2.4 #102] Let A be an $n \times n$ matrix with the property that $A^{101} = 0$.
 - a) Compute $(I A)(I + A + A^2 + \dots + A^{100})$.
 - b) Show that the matrix I A is invertible by finding its inverse.
- 9. Find all linear maps $L: \mathbb{R}^3 \to \mathbb{R}^3$ whose kernel is exactly the plane $\{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 + 2x_2 x_3 = 0\}.$
- 10. Linear maps F(X) = AX, where A is a matrix, have the property that F(0) = A0 = 0, so they necessarily leave the origin fixed. It is simple to extend this to include a translation,

$$F(X) = V + AX,$$

where V is a vector. Note that F(0) = V.

Find the vector V and the matrix A that describe each of the following mappings [here the light blue F is mapped to the dark red F].

- 11. [BRETSCHER, SEC. 2.4 #35] An $n \times n$ matrix A is called *upper triangular* if all the elements below the main diagonal, a_{11} a_{22} , ... a_{nn} are zero, that is, if i > j then $a_{ij} = 0$.
 - a) Let A be the upper triangular matrix

$$A = \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}.$$

For which values of a, b, c, d, e, f is A invertible?

- b) If A is invertible, is its inverse also upper triangular?
- c) Show that the product of two $n \times n$ upper triangular matrices is also upper triangular.
- d) Show that an upper triangular matrix is invertible if none of the elements on the main diagonal are zero.
- e) Conversely, if an upper triangular matrix is invertible show that none of the elements on the main diagonal can be zero.

Bonus Problem

[Please give these directly to Professor Kazdan]

1-B Let $L: V \to V$ be a linear map on a linear space V.

- a) Show that $\ker L \subset \ker L^2$ and, more generally, $\ker L^k \subset \ker L^{k+1}$ for all $k \ge 1$.
- b) If $\ker L^j = \ker L^{j+1}$ for some integer j, show that $\ker L^k = \ker L^{k+1}$ for all $k \ge j$.
- c) Let A be an $n \times n$ matrix. If $A^j = 0$ for some integer j (perhaps j > n), show that $A^n = 0$.

2-B Let V be a linear space and $L: V \to V$ a linear map.

- a) Show that $\operatorname{im} L^2 \subset \operatorname{im} L$, that is, if \vec{b} is in the image of L^2 , then \vec{b} is also in the image of L.
- b) Give and example of a 2×2 matrix L where im $L \not\subset \text{im } L^2$.

[Last revised: February 3, 2013]