
Math 312, Fall 2012 Jerry L. Kazdan

Problem Set 3

Due: In class Thursday, Sept. 27 Late papers will be accepted until 1:00 PM Friday.

These problems are intended to be straightforward with not much computation.

1. [Bretscher, Sec. 2.4 #37]. If A is an invertible matrix and c 6= 0 is a scalar, is the
matrix cA invertible? If so, what is the relationship between A−1 and (cA)−1?

Solution (cA)−1 =
1

c
A−1

2. [Bretscher, Sec. 2.4 #40].

a) If a matrix has two equal rows, show that it is not invertible. To be more specific,
it is not onto.

Solution: There are several methods, for instance, using row reduced echelon
form. However, in thinking about inverses I always prefer to think in terms about
solving the equation A~x = ~b . The left side of each equation corresponds to one of
the rows of A , so the left side of two of the equations are identical. Consequently
there is no solution except in the rare case that their right sides of these two rows
are identical. Thus A is not onto and hence not invertible.

In greater detail, say the first two rows are identical. Then the first two equations
of A~x = ~b are

a11x1 + a12x2 + · · · + a1nxn =b1

a11x1 + a12x2 + · · · + a1nxn =b2

.

Since the left-hand sides of these are identical, these cannot have a solution unless
b1 = b2 . Consequently, the equation A~x = ~b do not have a solution except for very
restricted vectors ~b .

b) If a matrix has two equal columns, show that it is not one-to-one and hence not
invertible.

Solution: Say the columns of A are the vectors A1 , A2 ,. . . ,An Then the
homogeneous equation A~x = ~0 is A1x1 + A2x2 + · · ·+ Anxn = ~0. Say the first two
columns are equal, A1 = A2 . Then the homogeneous equation is A1(x1 + x2) +
A3x3 + · · · + Anxn = ~0. Clearly, any vector of the form ~x = (c,−c, 0, 0, . . . , 0) is a
solution for any constant c . Since the homogeneous equation has a solution other
than ~0, the kernel of A is not zero so A is not one-to-one and thus cannot be
invertible.

Remark: Neither part of this used that A is a square matrix.

3. [Bretscher, Sec. 2.4 #52]. Let A :=









0 1 2
0 2 4
0 3 6
1 4 8









. Find a vector ~b in R
4 such that

the system A~x = ~b is inconsistent, that is, it has no solution.
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Solution: Call the columns A1 , A2 , A3 , so the equation A~x = ~b is A1x1 + A2x2 +
A3x3 = ~b . Note that in this problem A3 = 2A2 . Thus the equation is A1x1 + A2(x2 +
2x3) = ~b so ~b must be a linear combination of A1 and A2 . A simple ~b not of this form

is ~b =









1
0
0
0









.

4. Find a real 2 × 2 matrix A (with A2 6= I and A3 6= I ) so that A6 = I . For your
example, is A4 invertible?

Solution: Let A be a rotation by 60 degrees. A4 is invertible since A4A2 = A6 = I .
Thus (A4)−1 = A2 . Alternatively, for this example, since this A is a rotation (and any
rotation is invertible), this is geometrically obvious.

5. Let ~e1 = (1, 0, 0, . . . , 0) ∈ R
n and let ~v and ~w be any non-zero vectors in R

n .

a) Show there is an invertible matrix B with B~e1 = ~v .

Solution: Let the first column of B be the vector ~v and for the remaining
columns use any vectors that extend ~v to a basis for R

n . For instance, if the first
component of ~v is not zero, you can use the standard basis vectors ~e2 ,. . . , ~en for
the remaining columns of B .

b) Show there is an invertible matrix M with M ~w = ~v .

Solution: As in the previous part, let A be an invertible matrix that maps ~e1

to ~w . Then let M := BA−1 .

6. Let A , B , and C be n × n matrices with A and C invertible. Solve the equation
ABC = I − A for B .

Solution: B = A−1(I −A)C−1 . You can rewrite this in various ways – but I won’t.
However, one must be careful since the matrices A , B , and C are not assumed to
commute.

7. [Bretscher, Sec. 2.4 #67, 68, 69, 70, 71, 73] Let A and B , be invertible n × n

matrices. Which of the following are True? If False, find a counterexample.

a) (A + B)2 = A2 + 2AB + B2

Solution: False – unless AB = BA . Correct version: (A + B)2 = A2 + AB +
BA + B2

b) A2 is invertible and (A2)−1 = (A−1)2

Solution: True
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c) A + B is invertible and (A + B)−1 = A−1 + B−1

Solution: False, for instance if B = −A ,

d) (A − B)(A + B) = A2 − B2

Solution: False unless AB = BA . Should have (A − B)(A + B) = A2 + AB −
BA − B2

e) ABB−1A−1 = I

Solution: True since BB−1 = I .

f) (ABA−1)3 = AB3A−1 .

Solution: True since (ABA−1)3 = (ABA−1)(ABA−1)(ABA−1) = AB3A−1

8. [Similar to Bretscher, Sec. 2.4 #102] Let A be an n×n matrix with the property
that A101 = 0.

a) Compute (I − A)(I + A + A2 + · · · + A100).

Solution: In the special case where A4 = 0 this is (I − A)(I + A + A2 + A3) =
((I + A + A2 + A3) − (A + A2 + A3 + A4) = I − A4 = I .

The case where A101 = 0 is essentially identical: (I−A)(I+A+A2+· · ·+A100) = I

b) Show that the matrix I − A is invertible by finding its inverse.

Solution: From the previous part, (I − A)−1 = I + A + A2 + · · · + A100 .

9. Find all linear maps L : R
3 → R

3 whose kernel is exactly the plane { (x1, x2, x3) ∈ R
3 |

x1 + 2x2 − x3 = 0 } .

Solution: The first step is to get coordinates for the points ~x = (x1, x2, x3) in this
plane. Solve its equation for, say, x3 , so x3 = x1 + 2x2 . Since we want A~x = 0, we
write ~x as a column vector and then use x1 and x2 as coordinates:

~x =





x1

x2

x1 + 2x2



 = x1





1
0
1



 + x2





0
1
2



 = x1~v + x2 ~w,

where ~v1 and ~v2 are the two obvious column vectors. Since we want A~x = 0 for the
vectors in the plane, this means

0 = A(x1~v + x2 ~w) = x1A~v + x2A~w.

Because x1 and x2 can be anything, we want A~v = 0 and A~w = 0, that is,

0 = A~v =





a11 a12 a13

a21 a22 a23

a31 a32 a33









1
0
1



 =





a11 + a13

a21 + a23

a31 + a33



 = A1 + A3,
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where A1 , A2 , and A3 are the three columns of A . This gives A1 = −A3 .

Similarly, since we want A~w = 0,

0 = A~w =





a11 a12 a13

a21 a22 a23

a31 a32 a33









0
1
2



 =





a12 + 2a13

a22 + 2a23

a32 + 2a33



 = A2 + 2A3,

so A2 + 2A3 = 0, that is, A2 = −2A3 .

To summarize, we find that

A =







−A3







−2A3







A3







 ,

where A3 can be any column vector, say A3 = (a, b, c), then

A =





−a −2a a

−b −2b b

−c −2c c
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10. Linear maps F (X) = AX , where A is a matrix, have the property that F (0) = A0 = 0,
so they necessarily leave the origin fixed. It is simple to extend this to include a
translation,

F (X) = V + AX,

where V is a vector. Note that F (0) = V .

Find the vector V and the matrix A that describe each of the following mappings [here
the light blue F is mapped to the dark red F ].

a). b).

c). d).

Solution:

a). V =

(

4
2

)

, A = I b). V =

(

4
−2

)

, A =

(

1 0
0 2

)

c). V =

(

−1
2

)

, A =

(

−1 0
0 1

)

d). V =

(

1
2

)

, A =

(

1 1
0 1

)

.
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11. [Bretscher, Sec. 2.4 #35] An n × n matrix A is called upper triangular if all the
elements below the main diagonal, a11 , a22 , . . . ann are zero, that is, if i > j then
aij = 0.

a) Let A be the upper triangular matrix

A =





a b c

0 d e

0 0 f



 .

For which values of a, b, c, d, e, f is A invertible?

Solution: As always, in thinking about the invertability I think of solving the
equations A~x = ~y . In this case, the equations are

ax1 + bx2 + cx3 =y1

+ dx2 + ex3 =y2

fx3 =y3

Clearly, to always be able to solve the last equation for x3 we need f 6= 0. This
gives us x3 , which we use in the second equation. It then can always be solved for
x2 if (and only if) d 6= 0. Inserting the values of x2 and x3 in the first equation,
it can always be solved for x1 if (and only if) a 6= 0.

Summary: An upper triangular matrix A is invertible if and only if none of its
diagonal elements are 0.

b) If A is invertible, is its inverse also upper triangular?

Solution: In the above computation, notice that x3 only depends on y3 . Then
x2 only depends on y2 and y3 . Finally, x1 depends on y1 , y2 , and y3 . Thus the
inverse matrix is also upper triangular.

c) Show that the product of two n× n upper triangular matrices is also upper trian-
gular.

Solution: Try the 3 × 3 case.

The general case is the same – but takes some thought to write-out clearly and
briefly. It is a consequence of three observations:

1. A matrix C :=







c11 · · · c1n

...
...

...
cn1 · · · cnn






is upper-triangular if all the elements below

the main diagonal are zero, that is, cjk = 0 for all j > k .

2. For any matrices, to compute the product AB , the jk element is the dot product
of the jth row of A with the kth column of B .

3. For upper-triangular matrices:
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the jth row of A is (0, . . . 0, ajj , . . . , ajn) while the kth column of B is





















b1k

...
bkk

0
...
0





















.

For j > k , take the dot product of these vectors. The result is now obvious.

d) Show that an upper triangular matrix is invertible if none of the elements a11 , a22 ,
a33 , . . . , ann , on the main diagonal are zero.

Solution: This is the same as part a). The equations A~x = ~y are

a11x1 + a12x2 + · · · + a1 n−1xn−1 + a1nxn = y1

a22x2 + · · · + a2 n−1xn−1 + a2nxn = y2

...
...

...

an−1 n−1xn−1 + an−1 nxn = yn−1

annxn = yn.

To begin, solve the last equation for xn . This can always be done if (and only if)
ann 6= 0. Then solve the second from the last for xn−1 , etc. This computation also
proves the converse (below).

As in part b), the inverse, if it exists, is also upper triangular.

e) Conversely, if an upper triangular matrix is invertible show that none of the ele-
ments on the main diagonal can be zero.

Bonus Problem

[Please give these directly to Professor Kazdan]

1-B Let L : V → V be a linear map on a linear space V .

a) Show that kerL ⊂ kerL2 and, more generally, kerLk ⊂ kerLk+1 for all k ≥ 1.

b) If kerLj = kerLj+1 for some integer j , show that kerLk = kerLk+1 for all k ≥ j .

c) Let A be an n × n matrix. If Aj = 0 for some integer j (perhaps j > n), show
that An = 0.

2-B Let V be a linear space and L : V → V a linear map.

a) Show that imL2 ⊂ im L , that is, if ~b is in the image of L2 , then ~b is also in the
image of L .

b) Give and example of a 2 × 2 matrix L where im L 6⊂ im L2 .

[Last revised: February 7, 2013]
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