
Math 312, Fall 2012 Jerry L. Kazdan

Problem Set 4

Due: In class Thursday, Oct. 4 Late papers will be accepted until 1:00 PM Friday.

In addition to the problems below, you should also know how to solve the following problems
from the text. Most are simple mental exercises. These are not to be handed in.

Sec. 3.1, #2, 4, 13, 15, 30
Sec. 3.2 #1, 2, 9. 10, 11, 19, 27
Sec. 3.3 #1, 2, 28, 32, 35, 37, 39
Sec. 3.4 #1, 2, 3, 10, 20, 37
Sec. 4.1 # 1-5, 8, 10, 25, 26, 48, 50

1. Which of the following sets of vectors are bases for R2?

a). f(0; 1); (1; 1)g
b). f(1; 0); (0; 1); (1; 1)g
c). f(1; 0); (�1; 0g

d). f(1; 1); (1; �1)g
e). f((1; 1); (2; 2)g
f). f(1; 2)g

Solution: a), c), and d) are bases for R2 , b) linearly dependent, e) linearly
dependent and don't span, f) doesn't span.

2. For which real numbers c do the vectors: (c; 1; 1), (1; c; 1), (1; 1; c), not form a basis
of R3? For each of the values of c that you �nd, what is the dimension of the subspace
of R3 that they span?

Solution: Since R3 has dimension 3, we need only check when these vectors are
linearly dependent, that is, can we �nd numbers x1 , x2 , x3 not all zero so that

x1(c; 1; 1) + x2(1; c; 1) + x3(1; 1; x) = 0;

that is,

cx1 + x2 + x3 =0

x1 + cx2 + x3 =0

x1 + x2 + cx3 =0

Adding these equations we get (c + 2)(x1 + x2 + x3) = 0 . Thus, if c = �2, we
immediately �nd these vectors are linearly dependent. Since the vectors (�2; 1; 1) and
(1;�2; 1) are clearly linearly independent, in this case these vectors span a 2 dimensional
space.

If c 6= 2, then adding the equations we �nd that x1+x2+x3 = 0. Comparing this with
the equations we �nd that if c 6= 1, then x1 = x2 = x3 = 0. However if c = 1 then the
three vectors only span the one dimensional space of vectors of the form a(1; 1; 1).

1



3. Compute the dimension and �nd bases for the following linear spaces.

a) [See Bretscher, Sec. 4.1 #25]. Quartic polynomials p(x) = a0+ a1x+ a2x
2+

a3x
3 + a4x

4 with the property that p(2) = 0 and p(3) = 0.

Solution: Since p(x) is zero at x = 2 and x = 3, we can factor x� 2 and x� 3
from p(x) so p(x) has the form

p(x) = (x� 2)(x� 3)(a+ bx+ cx2):

Thus the polynomials

p1(x) = (x� 2)(x� 3); p2(x) = (x� 2)(x� 3)x; p3(x) = (x� 2)(x� 3)x2

form a basis. The dimension of this space is therefore 3.

b) [See Bretscher, Sec. 4.1 #8] Real upper triangular 3� 3 matrices (�rst, show
that this is a linear space).

Solution: As a warm-up, �rst the case of 2�2 upper triangular matrices. These
have the form �

a b
0 c

�
= a

�
1 0
0 0

�
+ b

�
0 1
0 0

�
+ c

�
0 0
0 1

�
:

The three matrices on the right form a basis and the dimension of this space is 3.

Now the 3� 3 case: Each of these matrices have the form

0
@a b c
0 d e
0 0 f

1
A . It should

be clear that the following is a basis0
@1 0 0
0 0 0
0 0 0

1
A ;

0
@0 1 0
0 0 0
0 0 0

1
A ;

0
@0 0 1
0 0 0
0 0 0

1
A ;

0
@0 0 0
0 1 0
0 0 0

1
A ;

0
@0 0 0
0 0 1
0 0 0

1
A ;

0
@0 0 0
0 0 0
0 0 1

1
A ;

The dimension of this space is 6.

c) The space of linear maps L : R5 ! R
3 whose kernels contain (0; 2;�3; 0; 1).

Solution: As in Homework Set 3 #8, Let V1 , V2 ,. . . , V5 be the columns of L .
Then 2V2 � 3V3 + V5 = 0. We solve this, say, for V5 = �2V2 + 3V3 . This tells us
that L has the form

L =

0
@
0
@V1

1
A
0
@V2

1
A
0
@V3

1
A
0
@V4

1
A
0
@�2V2 + 3V3

1
A
1
A

Each of the 4 vectors Vj , j = 1; 2; 3; 4, which are arbitrary, have 3 components.
Therefore the space of all such maps L has dimension 4� 3 = 12.
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4. [See Bretscher, Sec. 3.2 #6] Let U and V both be two-dimensional subspaces of
R
5 , and let W = U \ V . Find all possible values for the dimension of W .

Solution: Let e1 = (1; 0; 0; 0; 0), e2 = (0; 1; 0; 0; 0),. . . , e5 = (0; 0; 0; 0; 1) be the
standard basis for R5 and say U is spanned by e1 and e2 .

If V is also spanned by e1 and e2 the dimension of W is 2, clearly the largest possible.

If V is spanned by e1 and e3 the dimension of W is 1.

If V is spanned by e3 and e4 the dimension of W is 0. They intersect only at the
origin.

5. [See Bretscher, Sec. 3.2 #50] Let U and V both be two-dimensional subspaces
of R5 , and de�ne the set W := U + V as the set of all vectors w = u+ v where u 2 U
and v 2 V can be any vectors.

a) Show that W is a linear space.

Solution: Since the sum of two vectors in U is in U and the sum of two vectors
in V is also in V , then the sum of two vectors in W is also in W

Similarly, if ~w = ~u+ ~v 2W , then so is c~w = c~u+ c~v for any scalar c .

b) Find all possible values for the dimension of W .

Solution: We use the notation of the previous problem.

If V is also spanned by e1 and e2 the dimension of W is 2, clearly the smallest
possible.

If V is spanned by e1 and e3 the dimension of W is 3.

If V is spanned by e3 and e4 the dimension of W is 4. This is the largest possible.

6. [See Bretscher, Sec. 3.2 #42] Let ~v1 , ~v2 , and ~v3 be orthogonal unit vectors in
R
n . Show that they must be linearly independent. [This problem s very short.]

Solution: Say
a~v1 + b~v2 + c~v3 = 0

for some scalars a , b , and c . We want to show that a = b = c = 0 Take the inner
product of both sides with ~v1 gives a = 0. Similarly, b = c = 0.

7. Say you have k linear algebraic equations in n variables; in matrix form we write
A~x = ~y . Give a proof or counterexample for each of the following.

a) If n = k there is always at most one solution.

Solution: False. A = ( 0 0
0 0

) and A = ( 1 0
0 0

) are both counterexamples. It is true
only if A is invertible.

b) If n > k , given any ~y . you can always solve A~x = ~y .

Solution: False. Counterexamples: A = ( 0 0 0
0 0 0

) and A = ( 1 2 3
2 4 6

).
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c) If n > k the nullspace of A has dimension greater than zero.

Solution: True. For A~x = ~y , if there are more unknowns than equations, then
the homogeneous equation A~x = 0 always has a a solution other than the trivial
solution ~x = 0.

d) If n < k then for some ~y there is no solution of A~x = ~y .

Solution: True. If A : Rn ! R
k , then the dimension of the image of A is at

most n . Thus, if n < k then A cannot be onto.

e) If n < k the only solution of A~x = 0 is ~x = 0.

Solution: False. Counterexamples: A =
�
0 0
0 0
0 0

�
and A =

�
0 1
0 2
0 3

�
.

8. Find a 3� 3 matrix that acts on R3 as follows: it keeps the x1 axis �xed but rotates
the x2 x3 plane by 60 degrees.

Solution: A =

0
@1 0 0

0 1=2 �p3=2
0
p
3=2 1=2

1
A

This problem is a bit ambiguous since the problem does not specify how you should
measure the angle (beginning from the x2 axis or x3 axis) and the sense of the rotation
(something like clockwise or counter-clockwise).

9. Give a proof or counterexample the following. In each case your answers should be
brief.

a) Suppose that ~u , ~v and ~w are vectors in a vector space V and T : V ! W is a
linear map. If ~u , ~v and ~w are linearly dependent, is it true that T (~u), T (~v) and
T (~w) are linearly dependent? Why?

Solution: True. Say a~u + b~v + c~w = 0. Then aT (~u) + bT (~v) + cT (~w) =
T (a~u+ b~v + c~w) = T (0) = 0.

b) If T : R6 ! R
4 is a linear map, is it possible that the nullspace of T is one

dimensional?

Solution: Impossible. By the Dimension Theorem (\Rank-Nullity Theorem,"
p. 129, p. 165)

dimR6 = dimker(T ) + dim im(T ) so dimker(T ) = 6� dim im(T ):

Since im(T ) � R4 , then dim im(T ) � 4. Thus dimker(T ) � 2.

10. Find a polynomial p(x) of degree at most 3 that passes through the following 4 data
points in the plane R2 : (1; 1), (2; 0), (3;�1), and (4; 3).
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Solution: As in class, we follow Lagrange and use a clever basis for the space of cubic
polynomials that is adapted to this problem. Call the data points (xj ; yj), j = 1; 2; 3; 4.

We construct cubic polynomials pi(x), i = 1; 2; 3; 4 so that pi(xj) =

(
1 if i = j;

0 if i 6= j
.

Then the desired polynomial is

p(x) := y1 p1(x) + y2 p2(x) + y3 p3(x) + y4 p4(x):

For our data points,

p1(x) :=
(x� 2)(x� 3)(x� 4)

(1� 2)(1� 3)(1� 4)
p2(x) :=

(x� 1)(x� 3)(x� 4)

(2� 1)(2� 3)(2� 4)

p3(x) :=
(x� 1)(x� 2)(x� 4)

(3� 1)(3� 2)(3� 4)
p4(x) :=

(x� 1)(x� 2)(x� 3)

(4� 1)(4� 2)(4� 3)
so

p(x) :=1 p1(x) + 0 p2(x)� 1p3 (x) + 3 p4(x)

=
(x� 2)(x� 3)(x� 4)

(1� 2)(1� 3)(1� 4)
� (x� 1)(x� 2)(x� 4)

(3� 1)(3� 2)(3� 4)
+ 3

(x� 1)(x� 2)(x� 3)

(4� 1)(4� 2)(4� 3)
:

11. [Bretscher, Sec. 3.1 #37] For the matrix M :=

0
@0 1 0
0 0 1
0 0 0

1
A describe the kernels

and images of M , M2 , and M3 geometrically.

Solution: Let e1 , e2 , and e3 be the standard basis for R3 . Then Me1 ! 0,
Me2 ! e1 , and Me3 ! e2 . So the e1 axis is the kernel of M and the plane spanned
by e1 and e2 is the image of M .

Repeating this, M2e1 =M(M(e1) = 0, M2e2 =M(Me2) = 0, and M2e3 =M(Me3) =
e1 so the plane spanned by e1 and e2 is the kernel of M2 while the e3 axis is the image
of M2 . M

3 = 0 so the kernel is all of R3 while the image is just the origin (which has
dimension 0.

12. [Bretscher, Sec. 3.2 #46] Find a basis for the kernel of the matrix

M :=

�
1 2 0 3 5
0 0 1 4 6

�
:

Justify your answer carefully; that is, explain how the vectors you found are both
linearly independent and span the kernel.

Solution: To �nd the kernel we solve the homogeneous equation M~x = 0, that is

x1 + 2x2 + 3x4 + 5x5 =0

x3 + 4x4 + 6x5 =0

5



We solve the �rst equation for, say x1 = �2x2 � 3x4 � 5x5 and the second for x3 =
�4x4 � 6x5 . Thus, for any choice of x2 , x4 and x5

~x =

0
BBBB@
�2x2 � 3x4 � 5x5

x2
�4x4 � 6x5

x4
x5

1
CCCCA =

0
BBBB@
�2
1
0
0
0

1
CCCCAx2 +

0
BBBB@
�3
0
�4
1
0

1
CCCCAx4 +

0
BBBB@
�5
0
�6
0
1

1
CCCCAx5:

The three column vectors on the right are a basis for the kernel of M .

13. Compute the rank (dimension of the image) of each of the following matrices.

a):

�
0 1
0 0

�
b):

�
0 1
0 1

�
c):

0
@1 2 0
0 �1 7
0 0 2

1
A d):

0
@0 1 0
0 0 3
0 0 2

1
A e):

0
@1 2 0
0 �1 7
0 0 0

1
A

Solution: The image of a matrix is the span of the columns, that is, all possible
linear combinations of the columns.

In a) and b) the image is all multiples of the second column, so the image is one
dimensional.

In c). The matrix is upper triangular with non-zero diagonal elements. Thus the three
columns are linearly independent so the dimension of the image is 3.

Alternate method: If we call the matrix A , another way to see this is to �nd the vectors
~y = (y1; y2; y3) for which one can solve A~x = ~y , that is,

x1 + 2x2 = y1

� x2 +7x3 = y2

2x3 = y3

This is an upper triangular system. Solve the last equation for x3 , then the second
equation for x2 and �nally the �rst equation for x1 . Thus, given any ~y 2 R2 there is
a (unique) solution so the dimension of the image is 3.

In d). The matrix is upper triangular. The �rst column is zero but the last two columns
are clearly linearly independent. The dimension of the image is 2.

Alternate method: Solve A~x = ~y , as in c).

In e). Since the third component of each of the columns is zero. The �rst two columns
are linearly independent (in fact any two of them are linearly independent) do the
dimension of the image is 2.

Alternate method: Solve A~x = ~y , as in c).
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14. Compute the rank (dimension of the image) of each of the following matrices:

A :=

0
BB@
1 2 0 �3
0 0 4 2
0 0 2 �2
0 0 0 �5

1
CCA ; B :=

0
BBBB@
1 0 0 0 0
0 4 0 0 0
0 0 2 0 0
0 0 0 9 0
0 0 0 0 1

1
CCCCA ; C :=

0
BBBB@
1 0 0 0 0
0 0 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 1

1
CCCCA :

Solutions: Since the image is the span of the columns of these matrices, we use the
procedure of the previous problem. Since all of these matrices are upper triangular,
the approach of directly solving the equations M~x = ~y (where M is A , B , or C ) is
particularly transparent and gives

rank(A) = 3; rank(B) = 5; rank(C) = 3:

15. [Bretscher, Sec. 3.3 #30] Find a basis for the subspace of R4 de�ned by the
equation 2x1 � x2 + 2x3 + 4x4 = 0.

Solution: Solve this for, say, x2 = 2x1 + 2x3 + 4x4 . Then a vector ~x is in the
subspace if (and only if) for any choice of x1 , x3 , and x4

~x =

0
BB@

x1
2x1 + 2x3 + 4x4

x3
x4

1
CCA =

0
BB@
1
2
0
0

1
CCAx1 +

0
BB@
0
2
1
0

1
CCAx4 +

0
BB@
0
4
0
1

1
CCAx4:

The three column vectors on the right are a basis for this subspace: dimension is 3.

16. [Bretscher, Sec. 4.1 #51] Find all solutions f(x) of the di�erential equation

f 00 � 7f 0 + 12f = 0:

Solution: Let Lf := f 00 � 7f 0 + 12f . Observe that Lerx = (r2 � 7r + 12)erx .
Consequently, if r is a root of the quadratic polynomial r2 � 7r + 12, then erx is a
solution of the homogeneous equation Lf = 0. The roots are r = 3 and r = 4, so both
e3x and e4x are solutions of Lf = 0. By linearity, any linear combination of these is
also a solution:

f(x) = ae3x + be4x:

This is the general solution (a fact we have not yet proved) so the dimension of the
kernel of L is two. The proof of the missing fact is an easy consequence of the following
more general

Theorem Let A(x) be a square matrix whose elements depend continuously on x. If

the vector ~u(x) is a solution of the homogeneous �rst order linear ordinary di�erential

equation (ode) ~u0 +A(x)~u = 0 with ~u(0) = 0, then ~u(x) � 0.

We'll prove this in class soon. It is not di�cult.

7



Remark: Bretscher, Sec. 4.1 #58 was done in class. (This is not a homework problem.)

Bonus Problem

[Please give this directly to Professor Kazdan]

1-B [Bretscher, Sec. 3.3 #64] Two subspaces V and W of Rn are called complements

if any vector ~x 2 R
n can be expressed uniquely as ~x = ~v + ~w , where ~v 2 V and

~w 2 W . Show that V and W are complements if (and only if) V \ W = 0 and
dimV + dimW = n .

[Last revised: December 22, 2012]
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