
Math 312, Fall 2012 Jerry L. Kazdan

Problem Set 5

Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

In addition to the problems below, you should also know how to solve the following problems
from the text. Most are simple mental exercises. These are not to be handed in.

Sec. 5.1, #28, 29, 31
Sec. 5.2 #33

1. [Bretscher, Sec. 5.1 #16] Consider the following vectors in R
4

~u1 =









1/2
1/2
1/2
1/2









, ~u2 =









1/2
1/2

−1/2
−1/2









, ~u3 =









1/2
−1/2

1/2
−1/2









.

Can you find a vector u4 in R
4 such that the vectors ~u1 , ~u2 , ~u3 , ~u4 are orthonormal?

If so, how many such vectors are there?

Solution: Since R
4 is four dimensional, you can extend these three orthonormal

vectors to an orthonormal basis. First find a vector orthogonal to these three; then
normalize it to be a unit vector. In this case, looking at the three given vectors,
another immediately comes to mind:

~u4 =









1/2
−1/2
−1/2

1/2









, (1)

with ~̂u := −~u4 another possibility. These two are the only possibility since the orthog-
onal complement of the span of ~u1 , ~u2 , ~u3 is one dimensional so a basis will have only
one vector. After we have found one, which we call ~u4 , any other, say ~̂w must have
the form ~w = c~u4 for some constant c . Because we want a unit vector,

1 = ‖~w‖ = c2‖~u4‖ = c2,

so c = ±1.

But what if my ~u4 didn’t immediately come to mind? Use the Gram-Schmidt process.
Pick any vector not in the span of ~u1 , ~u2 , ~u3 . Almost any vector in R

4 will do. I will

try the simple ~w :=









1
0
0
0









. We want to write ~w in the form

~w = a~u1 + b~u2 + c~u3 + ~z,
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where ~z is orthogonal to ~u1 , ~u2 , and ~u3 . Taking the inner product of both sides of
this successively with ~u1 , ~u2 , and ~u3 (which are unit vectors), we find that

a = 〈~w, ~u1〉 = 1/2, b = 〈~w, ~u2〉 = 1/2, c = 〈~w, ~u3〉 = 1/2.

Then

~z = ~w − [(1/2)~u1 + (1/2)~u2 + (1/2)~u3] =









1
0
0
0









− 1

2









3/2
1/2
1/2

−1/2









=









1/4
−1/4
−1/4

1/4









To get the desired unit vector we let ~u4 = ~z/‖~z‖ which agrees with (1)

2. [Bretscher, Sec. 5.1 #17] Find a basis for W⊥ , where

W = span























1
2
3
4









,









5
6
7
8























.

Solution: The vectors ~x = (x1, x2, x3, x4) ∈ W⊥ must satisfy

x1 + 2x2 + 3x3 + 4x4 =0

5x1 + 6x2 + 7x3 + 8x4 =0

Solving these equations for x1 and x2 in terms of x3 and x4 we find

x1 = x3 + 2x4 x2 = −2x3 − 3x4.

Thus

~x =









x3 + 2x4

−2x3 − 3x4

x3

x4









=









1
−2

1
0









x3 +









2
−3

0
1









x4

The two vectors at the end of the previous line are a basis for W⊥

3. [Bretscher, Sec. 5.1 #21] Find scalars a , b , c , d , e , f , and g so that the following
vectors are orthonormal:





a
d
f



 ,





b
1
g



 ,





c
e

1/2



 .
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Solution: The orthogonality gives

ab + d + fg = 0, ac + ed + f/2 = 0, bc + e + g/2 = 0.

Because we want unit vectors, so we can’t scale the second or third vectors, we need
b = g = 0 and we can’t simply let c = e = 0 (it took me a few minutes to grasp this).
The orthogonality conditions are then

d = 0, ac + f/2 = 0, e = 0.

That these are unit vectors gives a2 + f2 = 1 and c2 +1/4 = 1. Therefore c = ±
√

3/2,
so f = ∓(

√
3)a , which in turn implies a = ±1/2.

4. [Bretscher, Sec. 5.1 #26] Find the orthogonal projection PS of ~x :=





49
49
49



 into

the subspace S of R
3 spanned by ~v1 :=





2
3
6



 and ~v2 :=





3
−6

2



 .

Solution: We are fortunate that the vectors ~v1 and ~v2 are orthogonal. We want to
find constants a and b so that

~x = a~v1 + b~v2 + ~w, (2)

where ~w is orthogonal to S . Then the desired projection will be PS~x = a~v1 + b~v2 . To
find the scalars a and n , take the inner product of (2) with ~v1 and then ~v2 we find

〈~x, ~v1〉 = a‖~v1‖2 and 〈~x, ~v2〉 = a‖~v2‖2.

Using the particular vectors in this problem, a = 11 and b = −1. Thus

PS~x = 11~v1 − ~v2 =





19
39
64





5. [Bretscher, Sec. 5.1 #37] Consider a plane V in R
3 with orthonormal basis ~u1

and ~u2 . Let ~x be a vector in R
3 . Find a formula for the reflection R~x of ~x across the

plane V .

Solution: The key is a picture (first try it in R
2 where V is a line through the

origin). Let PV ~x be the orthogonal projection of ~x into the plane V . Then ~w :=
PV ⊥~x = ~x − PV ~x is the projection of ~x orthogonal to V . From the picture, to get the
reflection, replace ~w by −~w
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V
P X

−W V
R X = P X − W

V

V

W=X − P X X = P X + W
VV

Thus, since ~x = PV ~x + ~w , then

RV ~x = PV ~x − ~w = PV ~x − (~x − PV ~x) = 2PV ~x − ~x.

In summary, orthogonal projections and reflections for a subspace V are related by the
simple formula RV = 2PV − I .

Note that the orthogonal projection, PV ~x , is easy to compute if you know an orthonor-
mal basis. All of this is very general. In this problem ~u1 and ~u2 are an orthonormal
basis for the subspace V , so

PV ~x = 〈~x, ~u1〉~u1 + 〈~x, ~u2〉~u2.

Consequently,
RV ~x = 2(〈~x, ~u1〉~u1 + 〈~x, ~u2〉~u2) − ~x.

6. [Bretscher, Sec. 5.2 #32] Find an orthonormal basis for the plane x1+x2+x3 = 0.

Solution: Pick any point in the plane, say ~v1 = (1,−1, 0). This will be the first
vector in our orthogonal basis. We use the Gram-Schmidt process to extend this to an
orthogonal basis for the plane.

Pick any other point in the plane, say ~w1 := (1, 0−1). Write it as ~w1 = a~v1 +~z , where
~z is perpendicular to ~v1 . Note that, although unknown, ~z will also be in the plane
since it will be a linear combination of ~v1 and ~w , both of which are in the plane. As
usual, by taking the inner product of both sides of ~w1 = a~v1 + ~z with ~v1 , we find

a = 〈~w1, ~v1〉/‖~v1‖2 =
1

2
.

Thus

~z = ~w1 −
1

2
~v1 =





1/2
1/2
−1





is in the plane and orthogonal to ~v1 . The vectors ~v1 and ~z are an orthogonal basis for
this plane. To get an orthonormal basis we just make these into unit vectors

~u1 :=
~v1

‖~v1‖
=

1√
2





1
−1

0



 and ~u2 :=
~z

‖~z‖ =
1

√

3/2





1/2
1/2
−1




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7. Let V be a linear space. A linear map P : V → V is called a projection if P 2 = P (this
P is not necessarily an “orthogonal projection”).

a) Show that the matrix P = ( 0 1
0 1

) is a projection. Draw a sketch of R
2 showing the

vectors (1, 2), (−1, 0), (3, 1) and (0, 3) and their images under the map P . Also
indicate both the image, V , and kernel, W , of P .

Solution: The image of P is the line x1 = x2 (the subspace V ); the kernel is
the x1 axis (the subspace W ). See the figure below.

b) Repeat this for the complementary projection Q := I − P .

Solution: The image of Q is the x1 axis (the subspace W ); its kernel is the line
x1 = x2 (the subspace V ).

−1
−3 −2 −1 1 2

1

2

3

P: 
Q:

W

3

V

c) If the image and kernel of a projection P are orthogonal then P is called an
orthogonal projection. [This of course now assumes that V has an inner product.]
Let M = ( 0 a

0 c
). For which real value(s) of a and c is this a projection? An

orthogonal projection?

Solution: M2 =

(

0 ac
0 c2

)

so M2 = M requires that ac = a and c2 = c . The

first requires that either a = 0 or c = 1. If a = 0 the second equation is satisfied
if either c = 0 or c = 1. If a 6= 0, then c = 1. Thus, the possibilities are:

P1 :=

(

0 0
0 0

)

, or P2 :=

(

0 a
0 1

)

(for any a).

For an orthogonal projection P , its image and kernal must be orthogonal. Since
for P1 its image is just 0, which is orthogonal to everything, it is an orthogonal
projection.

The kernel of P2 is the horizontal axis. Its image consists of points of the form
t(a, 1) for any scalar t . This straight line is perpendicular to the horizontal axis if
(and only if) a = 0. Thus P2 is an orthogonal projection if and only if a = 0.

The remaining problems are from the Lecture notes on Vectors

http://www.math.upenn.edu/∼kazdan/312F12/notes/vectors/vectors8.pdf
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8. [p. 8 #5] The origin and the vectors X , Y , and X + Y define a parallelogram whose
diagonals have length X + Y and X − Y . Prove the parallelogram law

‖X + Y ‖2 + ‖X − Y ‖2 = 2‖X‖2 + 2‖Y ‖2;

This states that in a parallelogram, the sum of the squares of the lengths of the diagonals
equals the sum of the squares of the four sides.

Solution: The standard procedure is to express the norm in terms of the inner
product and use the usual algebraic rules for the inner product. Thus

‖X+Y ‖2 = 〈X+Y, X+Y 〉 = 〈X, X〉+〈X, Y 〉+〈Y, X〉+〈Y, Y 〉 = 〈X, X〉+2〈X, Y 〉+〈Y, Y 〉,

with a similar formula for ‖X − Y ‖2 . After easy algebra, the result is clear.

9. [p. 8 #6]

a) Find the distance D from the straight line 3x − 4y = 10 to the origin.

Solution: Note that the equation of the parallel line ℓ through the origin is
3x−4y = 0, which we rewrite as 〈N, X〉 = 0, where N := (3, −4) and X = (x, y).
Let X0 be some point on the original line, so 〈N, X0〉 = 10. Then the desired
distance D is the same as the distance from X0 to the line ℓ : 〈N, X〉 = 0,
through the origin. But the equation for ℓ says the vector N is perpendicular
to the line ℓ . Thus the distance D is the length of the projection of X0 in the
direction of N , that is,

D =
|〈N, X0〉|

‖N‖ =
10

5
= 2.

b) Find the distance D from the plane ax + by + cz = d to the origin (assume the
vector ~N = (a, b, c) 6= 0).

Solution: The solution presented in the above special case generalizes immedi-
ately to give

D =
|〈N, X0〉|

‖N‖ =
|d|
‖N‖ .

10. [p. 8 #8]

a) If X and Y are real vectors, show that

〈X, Y 〉 =
1

4

(

‖X + Y ‖2 − ‖X − Y ‖2
)

. (3)

This formula is the simplest way to recover properties of the inner product from
the norm.

Solution: The straightforward procedure is the same as in Problem 8: rewrite
the norms on the right in terms of the inner product and expand using algebra.
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b) As an application, show that if a square matrix R has the property that it preserves
length, so ‖RX‖ = ‖X‖ for every vector X , then it preserves the inner product,
that is, 〈RX, RY 〉 = 〈X, Y 〉 for all vectors X and Y .

Solution: We know that ‖RZ‖ = ‖Z‖ for any vector Z . This implies ‖R(X +
Y )‖ = ‖X + Y ‖ for any vectors X and Y , and, similarly, ‖R(X −Y )‖ = ‖X −Y ‖
for any vectors X and Y . Consequently, by equation (3) (used twice)

4〈RX, RY 〉 =‖R(X + Y )‖2 − ‖R(X − Y )‖2

=‖X + Y ‖2 − ‖X − Y ‖2

=4〈X, Y 〉

for all vectors X and Y .

11. [p. 9 #10]

a) If a certain matrix C satisfies 〈X, CY 〉 = 0 for all vectors X and Y , show that
C = 0.

Solution: Since X can be any vector, let X = CY to show that ‖CY ‖2 =
〈CY, CY 〉 = 0. Thus CY = 0 for all Y so C = 0.

b) If the matrices A and B satisfy 〈X, AY 〉 = 〈X, BY 〉 for all vectors X and Y ,
show that A = B .

Solution: We have

0 = 〈X, AY 〉 − 〈X, BY 〉 = 〈X, (AY − BY )〉 = 〈X, (A − B)Y 〉

for all X and Y so by part (a) with C := A − B , we conclude that A = B .

12. [p. 9 #11–12] A matrix A is called anti-symmetric (or skew-symmetric) if A∗ =
−A .

a) Give an example of a 3 × 3 anti-symmetric matrix.

Solution: The most general anti-symmetric 3 × 3 matrix has the form





0 a b
−a 0 c
−b −c 0



 .

b) If A is any anti-symmetric matrix, show that 〈X, AX〉 = 0 for all vectors X .

Solution: 〈X, AX〉 = 〈A∗X, X〉 = −〈AX, X〉 = −〈X, AX〉 . Thus 2〈X, AX〉 =
0 so 〈X, AX〉 = 0.

7



c) Say X(t) is a solution of the differential equation
dX

dt
= AX , where A is an anti-

symmetric matrix. Show that ‖X(t)‖ = constant. [Remark: A special case is

that X(t) :=

(

cos t
sin t

)

satisfies X ′ = AX with A = ( 0 −1

1 0
) so this problem gives

another proof that cos2 t + sin2 t = 1].

Solution: Let E(t) := ‖X(t)‖2 . We show that dE/dt = 0. But, using part (b),

dE

dt
=

d

dt
〈X(t), X(t)〉 = 2〈X(t), X ′(t)〉 = 2〈X(t), AX(t)〉 = 0.

Bonus Problem

[Please give this directly to Professor Kazdan]

1-B This is a followup to problem 7.

a) If a projection P is self-adjoint, so P ∗ = P , show that P is an orthogonal projec-
tion.

b) Conversely, if P is an orthogonal projection, show that it is self-adjoint.

[Last revised: November 10, 2012]
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