## Problem Set 6

Due: In class Thursday, Oct. 25 Late papers will be accepted until 1:00 PM Friday.
Remark: We have completed Chapter 5, Sections 5.1, 5.2, 5.3, and 5.4 (except for the QR Factorization - which we will skip). Since Fall Break interrupts this week, this assignment will be shorter.

1. [Bretscher, Sec. 5.2 \#34] Find an orthonormal basis for the kernel of the matrix

$$
A:=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

2. [Bretscher, Sec. 5.4 \#20] Using pencil and paper, find the least-squares solution to $A \vec{x}=\vec{b}$ where

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad \vec{b}=\left(\begin{array}{l}
3 \\
3 \\
3
\end{array}\right)
$$

3. Use the Method of Least Squares to find the parabola $y=a x^{2}+b$ that best fits the following data given by the following four points $\left(x_{j}, y_{j}\right), j=1, \ldots, 4$ :

$$
(-2,4), \quad(-1,3), \quad(0,1), \quad(2,0)
$$

Ideally, you'd like to pick the coefficients $a$ and $b$ so that the four equations $a x_{j}^{2}+b=y_{j}$, $j=1, \ldots, 4$ are all satisfied. Since this probably can't be done, one uses least squares to find the best possible $a$ and $b$.
4. The water level in the North Sea is mainly determined by the so-called M2 tide, whose period is about 12 hours. The height $H(t)$ thus roughly has the form

$$
H(t)=c+a \sin (2 \pi t / 12)+b \cos (2 \pi t / 12)
$$

where time $t$ is measured in hours (note $\sin (2 \pi t / 12$ and $\cos (2 \pi t / 12)$ are periodic with period 12 hours). Say one has the following measurements:

| $t$ (hours) | 0 | 2 | 4 | 6 | 8 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $H(t)$ (meters) | 1.0 | 1.6 | 1.4 | 0.6 | 0.2 | 0.8 |

Use the method of least squares to find the constants $a, b$, and $c$ in $H(t)$ for this data.
5. Let $A$ be a real matrix, not necessarily square.
a) Show that both $A^{*} A$ and $A A^{*}$ are self-adjoint.
b) Show that $\operatorname{ker} A=\operatorname{ker} A^{*} A$.[Hint: Show separately that $\operatorname{ker} A \subset \operatorname{ker} A^{*} A$ and $\operatorname{ker} A \supset \operatorname{ker} A^{*} A$. The identity $\left\langle\vec{x}, A^{*} A \vec{x}\right\rangle=\langle A \vec{x}, A \vec{x}\rangle$ is useful.]
[Last revised: October 25, 2012]

