Problem Set 6

DuE: In class Thursday, Oct. 25 Late papers will be accepted until 1:00 PM Friday.
Remark: We have completed Chapter 5, Sections 5.1, 5.2, 5.3, and 5.4 (except for the QR Factorization - which we will skip). Since Fall Break interrupts this week, this assignment will be shorter.

1. [Bretscher, Sec. 5.2 \#34] Find an orthonormal basis for the kernel of the matrix

$$
A:=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

Solution: First we find a basis, then we find an orthonormal basis. To find the kernel of A, solve the equations

$$
\begin{array}{lcl}
x_{1}+x_{2} & +x_{3}+x_{4} & =0 \\
x_{1}+2 x_{2} & +3 x_{3}+4 x_{4} & =0
\end{array}
$$

say, for x_{1} and x_{2} in terms of x_{3} and x_{4}. This gives $x_{1}=x_{3}+2 x_{4}$ and $x_{2}=-2 x_{3}-3 x_{4}$. Thus, the vectors \vec{x} in the kernel of A have the form

$$
\vec{x}=\left(\begin{array}{c}
x_{3}+2 x_{4} \\
-2 x_{3}-3 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{r}
1 \\
-2 \\
1 \\
0
\end{array}\right) x_{3}+\left(\begin{array}{r}
2 \\
-3 \\
0 \\
1
\end{array}\right) x_{4}=x_{3} \vec{v}_{1}+x_{4} \vec{v}_{2},
$$

where \vec{v}_{1} and \vec{v}_{2} are defined to be the vectors in the middle of the previous line. They give a basis for the kernel of A.
Next we get an orthogonal basis. The first element will be \vec{v}_{1}. For the second, we want the component of \vec{v}_{2} that is perpendicular to \vec{v}_{1}. That is, write

$$
\vec{v}_{2}=a \vec{v}_{1}+\vec{z} \quad \text { where } \quad \vec{z} \perp \vec{v}_{1} .
$$

as usual, to find the constant a take the inner product of both sides with \vec{v}_{1} to find $a=\left\langle\vec{v}_{2}, \vec{v}_{1}\right\rangle /\left\|\vec{v}_{1}\right\|^{2}=8 / 6=4 / 3$. Thus,

$$
\vec{z}=\vec{v}_{2}-(4 / 3) \vec{v}_{1}=\left(\begin{array}{c}
2 / 3 \\
-1 / 3 \\
-4 / 3 \\
1
\end{array}\right)
$$

so \vec{v}_{1} and \vec{z} are an orthogonal basis. To get an orthonormal basis, we just make these into unit vectors: $\vec{u}_{1}=\vec{v}_{1} /\left\|\vec{v}_{1}\right\|, \vec{u}_{2}=\vec{z} /\|\vec{z}\|$.
2. [Bretscher, Sec. 5.4 \#20] Using pencil and paper, find the least-squares solution to $A \vec{x}=\vec{b}$ where

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad \vec{b}=\left(\begin{array}{l}
3 \\
3 \\
3
\end{array}\right)
$$

Solution: We need to solve the normal equations $A^{*} A \vec{x}=A^{*} A^{*} \vec{b}$, that is

$$
\begin{aligned}
& 2 x_{1}+x_{2}=6 \\
& x_{1}+2 x_{2}=6
\end{aligned}
$$

whose solution is $x_{1}=x_{2}=2$.
3. Use the Method of Least Squares to find the parabola $y=a x^{2}+b$ that best fits the following data given by the following four points $\left(x_{j}, y_{j}\right), j=1, \ldots, 4$:

$$
(-2,4), \quad(-1,3), \quad(0,1), \quad(2,0)
$$

Ideally, you'd like to pick the coefficients a and b so that the four equations $a x_{j}^{2}+b=y_{j}$, $j=1, \ldots, 4$ are all satisfied. Since this probably can't be done, one uses least squares to find the best possible a and b.
Solution: Using the data, ideally we want to solve

$$
\begin{aligned}
(-2)^{2} a+b & =4 \\
(-1)^{2} a+b & =3 \\
0^{2} a+b & =1 \\
2^{2} a+b & =0
\end{aligned}, \quad \text { that is, } \quad\left(\begin{array}{ll}
4 & 1 \\
1 & 1 \\
0 & 1 \\
4 & 1
\end{array}\right)\binom{a}{b}=\left(\begin{array}{l}
4 \\
3 \\
1 \\
0
\end{array}\right) .
$$

This has the form $A \vec{x}=\vec{b}$, where $\vec{x}=\binom{a}{b}$ etc. We need to solve the normal equations $A^{*} A \vec{x}=A^{*} \vec{b}$. Here $A^{*} A=\left(\begin{array}{cc}33 & 9 \\ 9 & 4\end{array}\right)$, etc. This is routine.
4. The water level in the North Sea is mainly determined by the so-called M2 tide, whose period is about 12 hours. The height $H(t)$ thus roughly has the form

$$
H(t)=c+a \sin (2 \pi t / 12)+b \cos (2 \pi t / 12),
$$

where time t is measured in hours (note $\sin (2 \pi t / 12$ and $\cos (2 \pi t / 12)$ are periodic with period 12 hours). Say one has the following measurements:

t (hours)	0	2	4	6	8	10
$H(t)$ (meters)	1.0	1.6	1.4	0.6	0.2	0.8

Use the method of least squares to find the constants a, b, and c in $H(t)$ for this data.
Solution: Using the data, the equations we ideally wish to solve are

$$
\begin{array}{lll}
c+a \sin 0 & +c \cos 0 & =1.0 \\
c+a \sin \pi / 3 & +c \cos \pi / 3 & =1.6 \\
c+a \sin 2 \pi / 3 & +c \cos 2 \pi / 3 & =1.4 \\
c+a \sin \pi & +c \cos \pi & =0.6 \\
c+a \sin 4 \pi / 3 & +c \cos 4 \pi / 3 & =0.2 \\
c+a \sin 5 \pi / 3 & +c \cos 5 \pi / 3 & =0.8
\end{array}, \quad \text { that is, } \quad\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & \sqrt{3} / 2 & 1 / 2 \\
1 & \sqrt{3} / 2 & -1 / 2 \\
1 & 0 & -1 \\
1 & -\sqrt{3} / 2 & -1 / 2 \\
1 & -\sqrt{3} / 2 & 1 / 2
\end{array}\right)\left(\begin{array}{l}
c \\
a \\
b
\end{array}\right)=\left(\begin{array}{l}
1.0 \\
1.6 \\
1.4 \\
0.6 \\
0.2 \\
0.8
\end{array}\right)
$$

This is now in standard form for the method of least squares. I used Maple and found: $c=0.93, a=0.58$, and $b=0.27$, so

$$
H(t)=0.93+0.58 \sin (2 \pi t / 12)+0.27 \cos (2 \pi t / 12)
$$

5. Let A be a real matrix, not necessarily square.
a) Show that both $A^{*} A$ and $A A^{*}$ are self-adjoint.

Solution: Use $(A B)^{*}=B^{*} A^{*}$ and $\left(A^{*}\right)^{*}=A$. This is easy. The example where $A:=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ is illuminating: $A^{*} A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right), \quad A A^{*}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
b) Show that $\operatorname{ker} A=\operatorname{ker} A^{*} A$. [Hint: Show separately that $\operatorname{ker} A \subset \operatorname{ker} A^{*} A$ and $\operatorname{ker} A^{*} A \subset \operatorname{ker} A$. The identity $\left\langle\vec{x}, A^{*} A \vec{x}\right\rangle=\langle A \vec{x}, A \vec{x}\rangle$ is useful.]
Solution: If $\vec{x} \in \operatorname{ker} A$, then $A \vec{x}=0$ so $A^{*} A \vec{x}=A^{*} 0=0$. Thus $\vec{x} \in \operatorname{ker} A^{*} A$. In other words, $\operatorname{ker} A \subset \operatorname{ker} A^{*} A$.
Conversely, if $\vec{x} \in \operatorname{ker} A^{*} A$, then $A^{*} A \vec{x}=0$ so

$$
0=\left\langle\vec{x}, A^{*} A \vec{x}\right\rangle=\langle A \vec{x}, A \vec{x}\rangle=\|A \vec{x}\|^{2}
$$

Consequently $A \vec{x}=0$, that is, $\vec{x} \in \operatorname{ker} A$. This proves that $\operatorname{ker} A^{*} A \subset \operatorname{ker} A$.
[Last revised: October 25, 2012]

