## Problem Set 7

DuE: In class Thursday,Nov. 1 Late papers will be accepted until 1:00 PM Friday.

## 1. [Quadratic polynomials]

a) Find a real symmetric (that is, self-adjoint) $3 \times 3$ matrix $A$ so that

$$
\langle\vec{x}, A \vec{x}\rangle=3 x_{1}^{2}+4 x_{1} x_{2}-x_{2}^{2}-x_{2} x_{3} .
$$

Suggestion: First do the simpler case of finding a $2 \times 2$ matrix $A$ so that

$$
\langle\vec{x}, A \vec{x}\rangle=3 x_{1}^{2}+4 x_{1} x_{2}-x_{2}^{2} .
$$

A simple but useful observation is that $4 x_{1} x_{2}=2 x_{1} x_{2}+2 x_{2} x_{1}$.
b) [Completing the Square] Which is simpler:

$$
z=x_{1}^{2}+4 x_{2}^{2}-2 x_{1}+4 x_{2}+2 \quad \text { or } \quad z=y_{1}^{2}+4 y_{2}^{2} ?
$$

If we let $y_{1}=x_{1}-1$ and $y_{2}=x_{2}+1 / 2$, they are essentially the same. All we did was translate the origin to $(1,-1 / 2)$.
The point of this problem is to generalize this to quadratic polynomials in several variables. Let

$$
\begin{aligned}
Q(\vec{x}) & =\sum a_{i j} x_{i} x_{j}+2 \sum b_{i} x_{i}+c \\
& =\langle\vec{x}, A \vec{x}\rangle+2\langle b, \vec{x}\rangle+c
\end{aligned}
$$

be a real quadratic polynomial so $\vec{x}=\left(x_{1}, \ldots, x_{n}\right), \vec{b}=\left(b_{1}, \ldots, b_{n}\right)$ are real vectors and $A=\left(a_{i j}\right)$ is a real symmetric $n \times n$ matrix.
In the case $n=1, Q(x)=a x^{2}+2 b x+c$ which is clearly simpler in the special case $b=0$. In this case, if $a \neq 0$, by completing the square we find

$$
Q(x)=a(x+b / a)^{2}+c-2 b^{2} / a=a y^{2}+\gamma
$$

where we let $y=x-b / a$ and $\gamma=c-b^{2} / a$. Thus, by translating the origin: $x=y+b / a$ we can eliminate the linear term in the quadatratic polynomial - so it becomes simpler.
Similarly, for any dimension $n$, if $A$ is invertible show there is a change of variables $\vec{y}==\vec{x}-\vec{v}$ (this is a translation by the vector $\vec{v}$ ) so that in the new $\vec{y}$ variables $Q$ has the form

$$
\hat{Q}(\vec{y}):=Q(\vec{y}+\vec{v})=\langle\vec{y}, A \vec{y}\rangle+\gamma \quad \text { that is, } \quad \hat{Q}(\vec{y})=\sum a_{i j} y_{i} y_{j}+\gamma
$$

where $\gamma$ involves $A, b$, and $c$ - but no terms that are linear in $\vec{y}$. [In the case $n=1$, which you should try first, this means using a change of variables $y=x-v$ to change the polynomial $a x^{2}+2 b x+c$ to the simpler $a y^{2}+\gamma$.]
c) As an example, apply this to $Q(\vec{x})=2 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}-4$.
2. For $\vec{x} \in \mathbb{R}^{n}$ let $Q(\vec{x}):=\langle\vec{x}, A \vec{x}\rangle$, where $A$ is a real symmetric matrix. We say that $A$ is positive definite if $Q(\vec{x})>0$ for all $\vec{x} \neq 0$, negative definite if $Q(\vec{x})<0$ for all $\vec{x} \neq 0$, and indefinite if $Q(\vec{x})>0$ for some $\vec{x}$ but $Q(\vec{x})<0$ for some other $\vec{x}$.
a) In the special case $n=2$ give (simple!) examples of matrices $A$ that are positive definite, negative definite, and indefinite.
b) In the special case where $A$ is an invertible diagonal matrix,

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right),
$$

under what conditions is $Q(\vec{x})$ positive definite, negative definite, and indefinite? [REmARK: We will see that the general case can always be reduced to this special case where $A$ is diagonal.]
3. Let $A(t)=\left(a_{i j}(t)\right)$ and $B(t)=\left(b_{i j}(t)\right)$ be $n \times n$ matrices whose elements depend smoothly on the real parameter $t$. As usual, we define the derivative as

$$
A^{\prime}(t)=\lim _{h \rightarrow 0} \frac{A(t+h)-A(t)}{h},
$$

assuming the limit exists. It is easy to check that this gives $A^{\prime}(t)=\left(a_{i j}^{\prime}(t)\right)$ (it is the same proof that the derivative of a vector $\vec{x}(t)$ is the derivative of its components).
a) Show that $\left.\left.\frac{d}{d t} A(t) B(t)=A^{\prime}(t) B\right) t\right)+A(t) B^{\prime}(t)$. [The proof is identical to the case $n=1$ in elementary calculus, with due caution since $A$ and $B$ usually don't commute.]
b) If $A(t)$ is invertible, find the formula for the derivative of $A^{-1}(t)$. [Again, The proof is identical to the case $n=1$ in elementary calculus - with due caution.]
4. Combine the rank-nullity Theorem 3.3 .7 with Theorem 5.4.1, which says $(\operatorname{im} A)^{\perp}=$ $\operatorname{ker}\left(A^{*}\right)$, to show that $\operatorname{rank} A=\operatorname{rank} A^{*}$, that is, $\operatorname{dim} \operatorname{im} A=\operatorname{dim} \operatorname{im} A^{*}$.

## Bonus Problem

[Please give this directly to Professor Kazdan]
1-B This problem concerns block matrices as discussed in the text on pages 75-77 and pages $87-88$. They are often useful to break a problem involving larger matrices into
ones with smaller matrices. This technique is essential in the computations Google uses to search the web.
Notation: Let $M=\left(\begin{array}{c|c}\mathrm{A} & \mathrm{B} \\ \hline \mathrm{C} & \mathrm{D}\end{array}\right)$ be an $(n+k) \times(n+k)$ block matrix partitioned into the $n \times n$ matrix A, the $n \times k$ matrix $B$, the $k \times n$ matrix $C$ and the $k \times k$ matrix $D$.
Let $N=\left(\begin{array}{c|c}\mathrm{W} & \mathrm{X} \\ \hline \mathrm{Y} & \mathrm{Z}\end{array}\right)$ is another matrix with the same "shape" as $M$. The text (p. 75-77) shows that the naive matrix multiplication

$$
M N=\left(\begin{array}{c|c}
\mathrm{AW}+\mathrm{BY} & \mathrm{AX}+\mathrm{BZ} \\
\hline \mathrm{CW}+\mathrm{DY} & \mathrm{CX}+\mathrm{DZ}
\end{array}\right)
$$

is correct. In the special case when $C=0$, the text (p. 87-88) shows that if $A$ is invertible, then $M$ is invertible if (and only if) $D$ is invertible and gives a formula for $M^{-1}$ (note that this is applicable in the special case of upper triangular matrices). Taking the transpose we also get formulas in the special case of $M$ where $B=0$.
a) More generally, if $A$ is invertible, show that $M$ is invertible if and only if the matrix $H:=D-C A^{-1} B$ is invertible - in which case

$$
M^{-1}=\left(\begin{array}{cc}
A^{-1}+A^{-1} B H^{-1} C A^{-1} & -A^{-1} B H^{-1} \\
-H^{-1} C A^{-1} & H^{-1}
\end{array}\right) .
$$

b) Similarly, if $D$ is invertible, show that $M$ is invertible if and only if the matrix $K:=A-B D^{-1} C$ is invertible - in which case

$$
M^{-1}=\left(\begin{array}{cc}
K^{-1} & -K^{-1} B D^{-1} \\
-D^{-1} C K^{-1} & D^{-1}+D^{-1} C K^{-1} B D^{-1}
\end{array}\right) .
$$

c) For which values of $a, b$, and $c$ is the following matrix invertible? What is the inverse?

$$
S:=\left(\begin{array}{cccccc}
a & b & b & \cdots & b & b \\
c & a & 0 & & 0 & 0 \\
c & 0 & a & & 0 & 0 \\
\vdots & \vdots & & \ddots & & \vdots \\
c & 0 & 0 & \cdots & a & 0 \\
c & 0 & 0 & \cdots & 0 & a
\end{array}\right)
$$

d) Let the square matrix $M$ have the block form $M:=\left(\begin{array}{cc}A & B \\ C & 0\end{array}\right)$, so $D=0$. If $B$ and $C$ are square, show that $M$ is invertible if and only if both $B$ and $C$ are invertible, and find an explicit formula for $M^{-1}$. [ANSWER: $M^{-1}:=\left(\begin{array}{cc}0 & C^{-1} \\ B^{-1} & -B^{-1} A C^{-1}\end{array}\right)$ ].
[Last revised: November 27, 2012]

