
Math 312, Fall 2012 Jerry L. Kazdan

Problem Set 7

Due: In class Thursday,Nov. 1 Late papers will be accepted until 1:00 PM Friday.

1. [Quadratic polynomials]

a) Find a real symmetric (that is, self-adjoint) 3 × 3 matrix A so that

〈~x, A~x〉 = 3x2

1 + 4x1x2 − x2

2 − x2x3.

Suggestion: First do the simpler case of finding a 2 × 2 matrix A so that

〈~x, A~x〉 = 3x2

1 + 4x1x2 − x2

2.

A simple but useful observation is that 4x1x2 = 2x1x2 + 2x2x1 .

Solution: A =





3 2 0
2 −1 −1

2

0 −1

2
0





b) [Completing the Square] Which is simpler:

z = x2

1 + 4x2

2 − 2x1 + 4x2 + 2 or z = y2

1 + 4y2

2 ?

If we let y1 = x1 − 1 and y2 = x2 + 1/2, they are essentially the same. All we did
was translate the origin to (1, −1/2).

The point of this problem is to generalize this to quadratic polynomials in several
variables. Let

Q(~x) =
∑

aijxixj + 2
∑

bixi + c

= 〈~x, A~x〉 + 2〈~b, ~x〉 + c

be a real quadratic polynomial so ~x = (x1, . . . , xn), ~b = (b1, . . . , bn) are real vectors
and A = (aij) is a real symmetric n × n matrix.

In the case n = 1, Q(x) = ax2 +2bx+ c which is clearly simpler in the special case
b = 0. In this case, if a 6= 0, by completing the square we find

Q(x) = a (x + b/a)2 + c − 2b2/a = ay2 + γ,

where we let y = x − b/a and γ = c − b2/a . Thus, by translating the origin:
x = y + b/a we can eliminate the linear term in the quadatratic polynomial – so it
becomes simpler.

Similarly, for any dimension n , if A is invertible show there is a change of variables
~y = ~x − ~v (this is a translation by the vector ~v ) so that in the new ~y variables Q
has the form

Q̂(~y) := Q(~y + ~v) = 〈~y, A~y〉 + γ that is, Q̂(~y) =
∑

aijyiyj + γ,
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where γ involves A , b , and c – but no terms that are linear in ~y . [In the case
n = 1, which you should try again, this time using the above suggestion, this means
using a change of variables y = x − v to change the polynomial ax2 + 2bx + c to
the simpler ay2 + γ .]

Solutions: First the case n = 1 again. Then Q(x) = Ax2 + 2bx + c so

Q(x) = Q(y + v) =A(y + v)2 + 2b(y + v) + c

=Ay2 + (2Av + 2b)y + Av2 + 2bv + c.

To kill the linear term, pick v so that 2Av + 2b = 0, that is, v = −b/A . Then
Q(x) = Ay2 + γ , where

γ = Ab2/A2 − 2b2/A + c = −b2/A + c.

Next, the case of arbitrary n . It should now feel routine. We are trying the change
of variables ~x == ~y − ~v with the thought of picking ~v to simplify the result. The
following should be a straightforward computation (the third line uses A = A∗ ):

Q(~x) =Q(~y + ~v) = 〈~y + ~v, A(~y + ~v)〉 + 〈~b, ~y + ~v〉 + c

=〈~y, A~y〉 + 〈~y, A~v〉 + 〈~v, A~y〉 + 〈~v, A~v〉 + 2〈~b, ~y〉 + 2〈~b, ~v〉 + c

=〈~y, A~y〉 + 〈2A~v + 2~b, ~y〉 + 〈~v, A~v〉 + 2〈~b, ~v〉 + c.

The term that is linear in ~y will vanish if we pick ~v so that 2A~v + 2~b = 0, that is,
~v = −A−1~b . Then

Q(~x) = 〈~y, A~y〉 + γ

where
γ = 〈A−1~b, ~b〉 − 2〈~b, A−1~b〉 + c = −〈~b, A−1~b〉 + c.

This agrees with what we found in the special case n = 1.

c) As an example, apply this to Q(~x) = 2x2

1
+ 2x1x2 + 3x2 − 4.

Solution: Here Q(~x) = 〈~x, A~x〉 + 2〈~b, ~x〉 + c , where A =

(

2 1
1 0

)

, ~b =

(

0
3/2

)

,

and c = −4. Thus A−1 =

(

0 1
1 −2

)

so ~v = −A−1~b =

(

3/2
−3

)

.

2. For ~x ∈ R
n let Q(~x) := 〈~x, A~x〉 , where A is a real symmetric matrix. We say that A

is positive definite if Q(~x) > 0 for all ~x 6= 0, negative definite if Q(~x) < 0 for all ~x 6= 0,
and indefinite if Q(~x) > 0 for some ~x but Q(~x) < 0 for some other~x .

a) In the special case n = 2 give (simple!) examples of matrices A that are positive
definite, negative definite, and indefinite.

Solution: Several examples. Begin with the polynomial, not the matrix.
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positive definite: If 〈~x, A~x〉 = x2

1
+ x2

2
then A is the identity matrix I , and

〈~x, A~x〉 = 2x2

1
+ 3x2

2
so A = ( 2 0

0 3
).

negative definite: For 〈~x, A~x〉 = −x2

1
− x2

2
, the matrix is −I while for 〈~x, A~x〉 =

−2x2

1
− 3x2

2
, the matrix is (−2 0

0 −3
).

indefinite: For 〈~x, A~x〉 = x2

1
−x2

2
the matrix is ( 1 0

0 −1
) while for 〈~x, A~x〉 = −2x2

1
+

5x2

2
the matrix is (−2 0

0 3
).

Note: If 〈~x, A~x〉 = 3x2

2
, the matrix is A := ( 0 0

0 3
) is not positive definite, it is

positive semi-definite, that is, 〈~x, A~x〉 ≥ 0 for all ~x but 〈~x, A~x〉 = 0 for some
~x 6= 0.

b) In the special case where A is an invertible diagonal matrix,

A =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . 0

0 0 · · · λn











,

under what conditions is Q(~x) positive definite, negative definite, and indefinite?
[Remark: We will see that the general case can always be reduced to this special
case where A is diagonal.]

Solution: Key step: here

〈~x, A~x〉 = λ1x
2

1 + λ2x
2

2 + · · · + λnx2

n.

If we let ~x = (0, 1, 0, . . . , 0), clearly 〈~x, A~x〉 = λ2 so if A is positive definite, then
λ2 > 0. Similarly, if A is positive definite, then all the λj are positive.

Conversely, if all the λJ are positive, it is clear that A is positive definite.

By the same reasoning, A is negative definite if (and only if) all the λj < 0, and
indefinite if at least one λj is positive and another is negative.

Note: the assumption “A is invertible” implies that none of the λj are zero.

3. Let A(t) = (aij(t)) and B(t) = (bij(t)) be n × n matrices whose elements depend
smoothly on the real parameter t . As usual, we define the derivative as

A′(t) = lim
h→0

A(t + h) − A(t)

h
,

assuming the limit exists. It is easy to check that this gives A′(t) = (a′ij(t)) (it is the
same proof that the derivative of a vector ~x(t) is the derivative of its components).

a) Show that
d

dt
A(t)B(t) = A′(t)B)t) + A(t)B′(t). [The proof is identical to the

case n = 1 in elementary calculus, with due caution since A and B usually don’t
commute.]
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Solution: Here

d

dt
A(t)B(t) = lim

h→0

A(t + h)B(t + h) − A(t)B(t)

h

But, just as in the case n = 1 (and this is the key step), begin with

A(t + h)B(t + h) − A(t)B(t) = [A(t + h) − A(t)]B(t + h) + A(t)[B(t + h) − B(t)].

Thus

d

dt
A(t)B(t) = lim

h→0

[A(t + h) − A(t)]B(t + h)

h
+ lim

h→0

A(t)[B(t + h) − B(t)]

h

=A′(t)B(t) + A(t)B′(t)

b) If A(t) is invertible, find the formula for the derivative of A−1(t). [Again, The
proof is identical to the case n = 1 in elementary calculus – with due caution.]

Solution:

Method 1 In the case n = 1 we have

1

h

[

1

f(t + h)
−

1

f(t)

]

=
f(t) − f(t + h)

[f(t + h)f(t)]h

=
1

f(t + h)

[

f(t) − f(t + h)

h

]

1

f(t)

so, taking the limit as h → 0, we find

d

dt

1

f(t)
= −

f ′(t)2

f(t)2
.

We slavishly imitate this in the general case:

A−1(t + h) − A−1(t)

h
= A−1(t + h)

[

A(t) − A(t + h)

h

]

A−1(t).

Again, taking the limit as h → 0, we find

dA−1(t)

dt
= −A−1(t)A′(t)A−1(t). (1)

Method 2 Use Part a) to differentiate both sides of the identity A(t)A−1(t) = I
to find

A′(t)A−1(t) + A(t)
(

A−1(t)
)′

= 0.

Solving this for
(

A−1(t)
)′

again gives (1).
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4. Combine the rank-nullity Theorem 3.3.7 with Theorem 5.4.1, which says (im A)⊥ =
ker(A∗), to show that rankA = rankA∗ , that is, dim imA = dim imA∗ .

Solution: Say A : Rn → R
k , so A∗ : R

k → R
n . Then the Rank-Nullity theorem

applied to A and A∗ gives

n = dim imA + dim kerA, and k = dim imA∗ + dim kerA∗ (2)

Theorem 4.5.1 states that (imA)⊥ = kerA∗ . This, and the same identity interchanging
the roles of A and A∗ , imply that

k − dim imA = dim kerA∗ and n − dim imA∗ = dim kerA. (3)

The first of (2)and the second of (3) show that dim imA = dim imA∗ . Note that one
can also get this by using the second of (2) and the first of (3).

Bonus Problem

[Please give this directly to Professor Kazdan]

1-B This problem concerns block matrices as discussed in the text on pages 75–77 and
pages 87–88. They are often useful to break a problem involving larger matrices into
ones with smaller matrices. This technique is essential in the computations Google uses
to search the web.

Notation: Let M =

(

A B

C D

)

be an (n + k) × (n + k) block matrix partitioned

into the n×n matrix A, the n×k matrix B , the k×n matrix C and the k×k matrix
D .

Let N =

(

W X

Y Z

)

is another matrix with the same “shape” as M . The text

(p. 75–77) shows that the naive matrix multiplication

MN =

(

AW+BY AX+BZ

CW+DY CX+DZ

)

is correct. In the special case when C = 0, the text (p. 87–88) shows that if A is
invertible, then M is invertible if (and only if) D is invertible and gives a formula
for M−1 (note that this is applicable in the special case of upper triangular matrices).
Taking the transpose we also get formulas in the special case of M where B = 0.

a) More generally, if A is invertible, show that M is invertible if and only if the matrix
H := D − CA−1B is invertible – in which case

M−1 =

(

A−1 + A−1BH−1CA−1 −A−1BH−1

−H−1CA−1 H−1

)

.
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b) Similarly, if D is invertible, show that M is invertible if and only if the matrix
K := A − BD−1C is invertible – in which case

M−1 =

(

K−1 −K−1BD−1

−D−1CK−1 D−1 + D−1CK−1BD−1

)

.

c) For which values of a , b , and c is the following matrix invertible? What is the
inverse?

S :=



















a b b · · · b b
c a 0 0 0
c 0 a 0 0
...

...
. . .

...
c 0 0 · · · a 0
c 0 0 · · · 0 a



















d) Let the square matrix M have the block form M :=
(

A B
C 0

)

, so D = 0. If B and
C are square, show that M is invertible if and only if both B and C are invertible,

and find an explicit formula for M−1 . [Answer: M−1 :=

(

0 C−1

B−1 −B−1AC−1

)

].

[Last revised: March 21, 2014]
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