Problem Set 8

DUE: In class Thursday, Nov. 8 Late papers will be accepted until 1:00 PM Friday.

Some of this is on the material in Bretscher, Sec. 5.5, concerning inner products in spaces of functions. *No* new ideas are involved, but it does take time to simply relax.

1. For a square matrix A, a scalar λ is an *eigenvalue* and a vector $\vec{v} \neq 0$ is a corresponding *eigenvector* if $A\vec{v} = \lambda \vec{v}$, so A maps \vec{v} to a multiple of itself.

If A is a symmetric (that is, self-adjoint) matrix with eigenvalues λ , μ , $\lambda \neq \mu$ and corresponding eigenvectors \vec{v} and \vec{w} . Show that \vec{v} and \vec{w} are orthogonal.

- 2. Introduce the following inner product on the space of continuous functions on the interval $-1 \le x \le 1$: $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx$.
 - a) Show that $1 \perp x$.
 - b) For which constants a, b is $f(x) := a + bx + x^2$ orthogonal to both 1 and x?
 - c) Find an orthogonal basis for the span of 1, x, and x^2 .
- 3. A real-valued function is called *even* if f(-x) = f(x) for all x, and odd if f(-x) = -f(x) for all x. For instance, $2x^4 + x \sin 3x$ is even and $\sin 4x 7x^5$ is odd. Using the same inner product as above,
 - a) Show that any odd function f(x) is orthogonal to the function 1.
 - b) Show that any even function f(x) is orthogonal to $\sin 13x$.
 - c) Show that the product of an even function f(x) and an odd function g(x) is odd.
 - d) Show that any even function f(x) is orthogonal to any odd function g(x).
- 4. [BRETSCHER, SEC. 5.5 #16] Consider the space of continuous functions on the interval [0, 1] (that is, $0 \le x \le 1$) with the inner product $\langle f, g \rangle := \int_0^1 f(x)g(x) dx$.
 - a) Using this inner product, find an orthonormal basis for the space \mathcal{P}_1 of polynomials of degree at most one.
 - b) Find a linear polynomial g(x) = a + bx that best approximates x^2 in the norm defined by this inner product.
- 5. [BRETSCHER, SEC. 5.5 #20]. In \mathbb{R}^2 consider the NEW inner product $\ll \vec{v}, \vec{w} \gg := \vec{v}^T \begin{pmatrix} 1 & 2 \\ 2 & 8 \end{pmatrix} \vec{w}$ with corresponding norm $|||\vec{v}|||^2 := \ll \vec{v}, \vec{v} \gg$.
 - a) Find all vectors in \mathbb{R}^2 that are orthogonal to $\begin{pmatrix} 1\\ 0 \end{pmatrix}$.
 - b) Find an orthonormal basis for \mathbb{R}^2 with respect to this inner product.

6. [BRETSCHER, SEC. 5.5 #24]. Using the inner product of problem 4, for the polynomials \mathbf{f} , \mathbf{g} , and \mathbf{h} say we are given the following table of inner products:

$\langle \ , \ \rangle$	f	g	h
f	4	0	8
g	0	1	3
h	8	3	50

For example, $\langle \mathbf{g}, \mathbf{h} \rangle = \langle \mathbf{h}, \mathbf{g} \rangle = 3$. Let *E* be the span of **f** and **g**.

- a) Compute $\langle \mathbf{f}, \mathbf{g} + \mathbf{h} \rangle$.
- b) Compute $\|\mathbf{g} + \mathbf{h}\|$.
- c) Find $\operatorname{proj}_E \mathbf{h}$. [Express your solution as linear combinations of \mathbf{f} and \mathbf{g} .]
- d) Find an orthonormal basis of the span of **f**, **g**, and **h** [Express your results as linear combinations of **f**, **g**, and **h**.]
- 7. [LIKE BRETSCHER, SEC. 5.5 #26 & 28]. Use the inner product $\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx$. Define

$$f(x) = \begin{cases} -1 & \text{if } -\pi < x \le 0, \\ 1 & \text{if } 0 < x \le \pi, \end{cases}$$

and extend f to all of \mathbb{R} as period is with period 2π : $f(x+2\pi) = f(x)$. This is called a square wave.

a) Compute the first N terms in the Fourier Series

$$f(x) = A_0 + \sum_{k=1}^{N} [A_k \cos kx + B_k \sin kx]$$

- b) Apply the Pythagorean Theorem 5.5.6 (page 343) to your answer.
- 8. Compute the determinant of the upper triangular matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

[Do the cases n = 2 and n = 3 first.]

9. The $n \times n$ matrices A and B are similar if there is and invertible $n \times n$ matrix S so that $B = SAS^{-1}$. If A and B are similar, show that det $B = \det A$.

[Last revised: November 14, 2012]