Math 312, Fall 2012

Problem Set 8

DUE: In class Thursday, Nov. 8 Late papers will be accepted until 1:00 PM Friday.

Some of this is on the material in Bretscher, Sec. 5.5, concerning inner products in spaces of functions. *No* new ideas are involved, but it does take time to simply relax.

1. For a square matrix A, a scalar λ is an *eigenvalue* and a vector $\vec{v} \neq 0$ is a corresponding *eigenvector* if $A\vec{v} = \lambda \vec{v}$, so A maps \vec{v} to a multiple of itself.

If A is a symmetric (that is, self-adjoint) matrix with eigenvalues λ , μ , $\lambda \neq \mu$ and corresponding eigenvectors \vec{v} and \vec{w} . Show that \vec{v} and \vec{w} are orthogonal.

SOLUTION: We know that $A\vec{v} = \lambda \vec{v}$ and $A\vec{w} = \mu \vec{w}$, where $\mu \neq \lambda$. Using the inner product we have

$$\langle A\vec{v}, \vec{w} \rangle = \lambda \langle \vec{v}, \vec{w} \rangle$$
 and $\langle A\vec{w}, \vec{v} \rangle = \mu \langle \vec{w}, \vec{v} \rangle$.

But since $A = A^*$, then $\langle A\vec{v}, \vec{w} \rangle = \langle \vec{v}, A\vec{w} \rangle \langle A\vec{w}, \vec{v} \rangle$. Consequently,

$$\lambda \langle \vec{v}, \, \vec{w} \rangle = \mu \langle \vec{v}, \, \vec{w} \rangle.$$

Since $\lambda \nu \mu$, then $\langle \vec{v}, \vec{w} \rangle = 0$.

- 2. Introduce the following inner product on the space of continuous functions on the interval $-1 \le x \le 1$: $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx$.
 - a) Show that $1 \perp x$.

Solution:
$$\langle 1, x \rangle = \int_{-1}^{1} 1 \cdot x \, dx = \frac{1}{2} x^2 \Big|_{-1}^{-1} = 0$$

b) For which constants a, b is $f(x) := a + bx + x^2$ orthogonal to both 1 and x? SOLUTION: We want $\langle a + bx + x^2, 1 \rangle = 0$ and $\langle a + bx + x^2, x \rangle = 0$, that is

$$0 = \int_{-1}^{1} (a + bx + x^2) 1 \, dx = 2a + 1 \qquad \text{and} \qquad 0 = \int_{-1}^{1} (a + bx + x^2) x \, dx = b,$$

so a = -1/2 and b = 0.

c) Find an orthogonal basis for the span of 1, x, and x^2 . Solution: $e_1(x) = 1$, $e_2(x) = x$, $e_3(x) = -\frac{1}{2} + x^2$.

3. A real-valued function is called *even* if f(-x) = f(x) for all x, and odd if f(-x) = -f(x) for all x. For instance, $2x^4 + x \sin 3x$ is even and $\sin 4x - 7x^5$ is odd. Using the same inner product as above,

a) Show that any odd function f(x) is orthogonal to the function 1.

SOLUTION: Since f(x) is odd, using the substitution t = x in the second step

$$\langle f, 1 \rangle = \int_{-1}^{1} f(x) \cdot 1 \, dx = \int_{-1}^{0} f(x) \, dx + \int_{0}^{1} f(x) \, dx$$

= $\int_{0}^{1} f(-t) \, dt + \int_{0}^{1} f(x) \, dx$
= $-\int_{0}^{1} f(t) \, dt + \int_{0}^{1} f(x) \, dx = 0$

- b) Show that any even function is orthogonal to $\sin 13x$. SOLUTION: Almost identical to part (a).
- c) Show that the product of an even function f(x) and an odd function g(x) is odd. SOLUTION: Let h(x) = f(x)g(x). Then

$$h(-x) = f(-x)g(-x) = -f(x)g(x) = -h(x).$$

- d) Show that any even function f(x) is orthogonal to any odd function g(x). SOLUTION: Let h(x) = f(x)g(x). Since h is odd, this follows from part (a).
- 4. [BRETSCHER, SEC. 5.5 #16] Consider the space of continuous functions on the interval [0, 1] (that is, $0 \le x \le 1$) with the inner product $\langle f, g \rangle := \int_0^1 f(x)g(x) dx$.
 - a) Using this inner product, find an orthonormal basis for the space \mathcal{P}_1 of polynomials of degree at most one.

SOLUTION: We use the Gram-Schmidt process. Pick the constant c so that $x = x \cdot 1 + w$, where $w(x) \perp 1$. Then

$$\langle x, 1 \rangle = c \langle 1, 1 \rangle + \langle w, 1 \rangle = c \int_0^1 1^2 dx = c + 0 = c.$$

Since $\langle x, 1 \rangle = \int_0^1 x \, dx = 1/2$, then c = 1/2. Consequently $w(x) = x - \frac{1}{2}$ is orthogonal to the function 1. Therefore $v_1(x) = 1$ and $v_2(x) = x - \frac{1}{2}$ is an orthogonal basis.

Because $||v_1||^2 = \int_0^1 1^2 dx = 1$ and $||v_2||^2 = \int_0^1 (x - \frac{1}{2})^2 dx = \frac{1}{12}$, an orthonormal basis is $e_1(x) = 1$ and $e_2(x) = \sqrt{12}(x - \frac{1}{2})$.

b) Find a linear polynomial g(x) = a + bx that best approximates x^2 in the norm defined by this inner product.

SOLUTION: The best approximation (in this norm) of $f(x) = x^2$ by a function of the form a + bx is the orthogonal projection of x^2 into this space. We thus seek constants α and β so that

$$x^{2} = \alpha e_{1}(x) + \beta e_{2}(x) + w(x), \qquad (1)$$

where w(x) is orthogonal to 1 and x, or equivalently, to e_1 and e_2 . To find α and β , as usual we take the inner product of (1) with e_1 and e_2 to find

$$\alpha = \langle x^2, e_1 \rangle = \int_0^1 x^2 \cdot 1 \, dx = \frac{1}{3} \quad \text{and} \quad \beta = \langle x^2, e_2 \rangle = \sqrt{12} \int_0^1 x^2 \left(x - \frac{1}{2} \right) = \frac{\sqrt{12}}{12} = \frac{1}{\sqrt{12}}$$

Thus the best approximation (using this inner product) is $\frac{1}{3} + (x - \frac{1}{2})$.

- 5. [BRETSCHER, SEC. 5.5 #20]. In \mathbb{R}^2 consider the inner product $\ll \vec{v}, \vec{w} \gg := \vec{v}^T \begin{pmatrix} 1 & 2 \\ 2 & 8 \end{pmatrix} \vec{w}$ with corresponding norm $|||\vec{v}|||^2 := \ll \vec{v}, \vec{v} \gg$.
 - a) Find all vectors in \mathbb{R}^2 that are orthogonal to $\vec{v} := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

SOLUTION: The condition $\vec{w} := \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$ being orthogonal to \vec{v} means $0 = \ll \vec{v}, \ \vec{w} \gg = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 8 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = w_1 + 2w_2,$

so $\vec{w} = c \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ where c is any scalar.

b) Find an orthonormal basis for \mathbb{R}^2 with respect to this inner product. SOLUTION: The vectors \vec{v} and \vec{w} are an orthogonal basis. To get an orthonormal basis we just make them into unit vectors – using the norm associated with this new inner product $|||\vec{v}|||^2 := \ll \vec{v}, \vec{v} \gg = \vec{v}^T \begin{pmatrix} 1 & 2 \\ 2 & 8 \end{pmatrix} \vec{v}$. Then $|||\vec{v}|||^2 = 1$ and $|||\vec{w}|||^2 = 4c^2$ so one orthonormal basis is

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $e_2 = \begin{pmatrix} -1 \\ 1/2 \end{pmatrix}$.

6. [BRETSCHER, SEC. 5.5 #24]. Using the inner product of problem 4, for the polynomials **f**, **g**, and **h** say we are given the following table of inner products:

$\langle \ , \ \rangle$	f	g	h
f	4	0	8
g	0	1	3
h	8	3	50

For example, $\langle \mathbf{g}, \mathbf{h} \rangle = \langle \mathbf{h}, \mathbf{g} \rangle = 3$. Let *E* be the span of **f** and **g**.

- a) Compute $\langle \mathbf{f}, \mathbf{g} + \mathbf{h} \rangle$. Solution: $\langle \mathbf{f}, \mathbf{g} + \mathbf{h} \rangle = 0 + 8 = 8$.
- b) Compute $\|\mathbf{g} + \mathbf{h}\|$.

Solution: $\|\mathbf{g} + \mathbf{h}\|^2 = 1 + 2 \cdot 3 + 50 = 57$ so $\|\mathbf{g} + \mathbf{h}\| = \sqrt{57}$

c) Find $\operatorname{proj}_E \mathbf{h}$. [Express your solution as linear combinations of \mathbf{f} and \mathbf{g} .]

SOLUTION: Since **f** and **g** are orthogonal, they are an orthogonal basis for E. Thus $\text{proj}_E \mathbf{h} = a\mathbf{f} + b\mathbf{g}$ for some constants a and b, that is,

$$\mathbf{h} = a\mathbf{f} + b\mathbf{g} + \mathbf{w},\tag{2}$$

for some $\mathbf{w} \perp E$. To find a and b, as usual we take the inner product of both sides with **f** and **g** and get

$$a = \frac{\langle \mathbf{h}, \mathbf{f} \rangle}{\|\mathbf{f}\|^2} = \frac{8}{4} = 2, \qquad b = \frac{\langle \mathbf{h}, \mathbf{g} \rangle}{\|\mathbf{g}\|^2} = \frac{3}{1} = 3.$$

Therefore,

$$\operatorname{proj}_E \mathbf{h} = 2\mathbf{f} + 3\mathbf{g}$$

d) Find an orthonormal basis of the span of **f**, **g**, and **h** [Express your results as linear combinations of **f**, **g**, and **h**.]

SOLUTION: Since \mathbf{f} and \mathbf{g} are orthogonal and, from equation (2), \mathbf{w} is orthogonal to both \mathbf{f} and \mathbf{g} , we find that \mathbf{f} , \mathbf{g} , and \mathbf{w} are an orthogonal bases. To get an orthonormal basis we need only normalize these. From (2),

$$\|\mathbf{h}\|^2 = \|2\mathbf{f}\|^2 + \|3\mathbf{g}\|^2 + \|\mathbf{w}\|^2$$

so $\|\mathbf{w}\|^2 = 50 - 4 \cdot 4 - 9 \cdot 1 = 25$. Therefore an orthonormal basis is

$$e_1 := \frac{1}{2}\mathbf{f}, \qquad e_2 := \mathbf{g}, \qquad e_3 := \frac{1}{5}\mathbf{w} = \frac{1}{5}(\mathbf{h} - 2\mathbf{f} - 3\mathbf{g}).$$

7. [LIKE BRETSCHER, SEC. 5.5 #26 & 28]. Use the inner product $\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx$. Define

$$f(x) = \begin{cases} -1 & \text{if } -\pi < x \le 0, \\ 1 & \text{if } 0 < x \le \pi, \end{cases}$$

and extend f to all of \mathbb{R} as period is with period 2π : $f(x+2\pi) = f(x)$. This is called a square wave.

a) Compute the first N terms in the Fourier Series

$$f(x) = A_0 + \sum_{k=1}^{N} [A_k \cos kx + B_k \sin kx] + R_N(x), \qquad (3)$$

where the remainder, $R_N(x)$, is orthogonal to 1, $\cos kx$, $\sin \ell x$, $k, \ell = 1, 2, ..., N$. SOLUTION: We use that with this inner product, the functions

1, $\cos kx$, and $\sin \ell x$, $k, \ell = 1, 2, 3, ...$

are orthogonal with $||1||^2 = 2\pi$, and $||\cos kx||^2 = ||\sin \ell x||^2 = \pi$. Then, taking the inner product of equation (3) with the $\cos jx$'s and \sin_{ℓ} 's we obtain

$$A_0 = \frac{\langle f, 1 \rangle}{2\pi}, \qquad A_k = \frac{\langle f, \cos kx \rangle}{\pi}, \qquad B_k = \frac{\langle f, \sin kx \rangle}{\pi}$$

Since our function f(x) is odd, by Problem 3 we know that $A_k = 0$ for k = 0, 1, 2, 3... and

$$B_{k} = -\int_{-\pi}^{0} \frac{\sin kx}{\pi} dx + \int_{0}^{\pi} \frac{\sin kx}{\pi} dx$$
$$= 2\int_{0}^{\pi} \frac{\sin kx}{\pi} dx = \frac{-2\cos kx}{\pi} \Big|_{0}^{\pi}$$
$$= \frac{2}{\pi} [1 - (-1)^{k}] = \begin{cases} \frac{4}{k\pi} & \text{if } k \text{ is odd} \\ 0 & \text{if } k \text{ is even} \end{cases}$$

Therefore, for N = 2K + 1,

$$f(x) = \frac{4}{\pi} \left[\frac{\sin x}{1} + \frac{\sin 3x}{3} + \dots + \frac{\sin(2K+1)x}{2K+1} \right] + R_{2K+1}(x),$$

where R_N isorthogonal to the preceding terms.

See http://mathworld.wolfram.com/FourierSeriesSquareWave.html for an interesting graph of how this Fourier series converges to the square wave.

b) Apply the Pythagorean Theorem 5.5.6 (page 343) to your answer.

SOLUTION: Because the terms in equation (3) are orthogonal, the Phythagoread theorem gives

$$||f||^{2} = 2\pi |A_{0}|^{2} + \pi \sum_{k=1}^{N} \left[|A_{k}|^{2} + |B_{k}|^{2} \right] + ||R_{N}||^{2}.$$

Applied to this example, where $||f||^2 = 2\pi$ and assuming (without proof here that $||R_N|| \to 0$) it gives:

$$2\pi = \pi \frac{16}{\pi^2} \left[1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots \right],$$

that is,

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8},$$

which one would not likely guess.

8. Compute the determinant of the upper triangular matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

[Do the cases n = 2 and n = 3 first.]

SOLUTION: Expanding by minors using the first column gives

$$\det A = a_{11}(-1)^{1+1} \det \begin{pmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

Repeating this we find that det $A = a_{11}a_{22}\cdots a_{nn}$, so for an upper (or lower) triangular matrix, the determinant is the product of the diagonal elements.

9. The $n \times n$ matrices A and B are *similar* if there is and invertible $n \times n$ matrix S so that $B = SAS^{-1}$. If A and B are similar, show that det $B = \det A$.

SOLUTION: Since for any $n \times n$ matrices $\det(MN) = (\det M)(\det N) = \det(NM)$, then

$$\det B = \det(SAS^{-1}) = \det(S) \det(AS^{-1}) = \det S \det S^{-1} \det(A) = \det A.$$

[Last revised: March 9, 2014]