
Math 312, Fall 2012 Jerry L. Kazdan

Problem Set 8

Due: In class Thursday, Nov. 8 Late papers will be accepted until 1:00 PM Friday.

Some of this is on the material in Bretscher, Sec. 5.5, concerning inner products in spaces
of functions. No new ideas are involved, but it does take time to simply relax.

1. For a square matrix A , a scalar λ is an eigenvalue and a vector ~v 6= 0 is a corresponding
eigenvector if A~v = λ~v , so A maps ~v to a multiple of itself.

If A is a symmetric (that is, self-adjoint) matrix with eigenvalues λ , µ , λ 6= µ and
corresponding eigenvectors ~v and ~w . Show that ~v and ~w are orthogonal.

Solution: We know that A~v = λ~v and A~w = µ~w , where µ 6= λ . Using the inner
product we have

〈A~v, ~w〉 = λ〈~v, ~w〉 and 〈A~w, ~v〉 = µ〈~w, ~v〉.

But since A = A∗ , then 〈A~v, ~w〉 = 〈~v, A~w〉〈A~w, ~v〉 . Consequently,

λ〈~v, ~w〉 = µ〈~v, ~w〉.

Since λνµ , then 〈~v, ~w〉− = 0.

2. Introduce the following inner product on the space of continuous functions on the
interval −1 ≤ x ≤ 1: 〈f, g〉 =

∫

1

−1
f(x)g(x) dx .

a) Show that 1 ⊥ x .

Solution: 〈1, x〉 =
∫

1

−1
1 · x dx = 1

2
x2

∣

∣

∣

1

−1
= 0.

b) For which constants a , b is f(x) := a + bx + x2 orthogonal to both 1 and x?

Solution: We want 〈a + bx + x2, 1〉 = 0 and 〈a + bx + x2, x〉 = 0, that is

0 =

∫

1

−1

(a + bx + x2)1 dx = 2a + 1 and 0 =

∫

1

−1

(a + bx + x2)x dx = b,

so a = −1/2 and b = 0.

c) Find an orthogonal basis for the span of 1, x , and x2 .

Solution: e1(x) = 1, e2(x) = x , e3(x) = −1

2
+ x2 .

3. A real-valued function is called even if f(−x) = f(x) for all x , and odd if f(−x) =
−f(x) for all x. For instance, 2x4 + x sin 3x is even and sin 4x − 7x5 is odd. . Using
the same inner product as above,
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a) Show that any odd function f(x) is orthogonal to the function 1.

Solution: Since f(x) is odd, using the substitution t = x in the second step

〈f, 1〉 =

∫

1

−1

f(x) · 1 dx =

∫

0

−1

f(x) dx +

∫

1

0

f(x) dx

=

∫

1

0

f(−t) dt +

∫

1

0

f(x) dx

= −
∫

1

0

f(t) dt +

∫

1

0

f(x) dx = 0.

b) Show that any even function is orthogonal to sin 13x .

Solution: Almost identical to part (a).

c) Show that the product of an even function f(x) and an odd function g(x)is odd.

Solution: Let h(x) = f(x)g(x). Then

h(−x) = f(−x)g(−x) = −f(x)g(x) = −h(x).

d) Show that any even function f(x) is orthogonal to any odd function g(x) .

Solution: Let h(x) = f(x)g(x). Since h is odd, this follows from part (a).

4. [Bretscher, Sec. 5.5 #16] Consider the space of continuous functions on the interval
[0, 1] (that is, 0 ≤ x ≤ 1) with the inner product 〈f, g〉 :=

∫

1

0
f(x)g(x) dx .

a) Using this inner product, find an orthonormal basis for the space P1 of polynomials
of degree at most one.

Solution: We use the Gram-Schmidt process. Pick the constant c so that
x = x · 1 + w , where w(x) ⊥ 1. Then

〈x, 1〉 = c〈1, 1〉 + 〈w, 1〉 = c

∫

1

0

12 dx = c + 0 = c.

Since 〈x, 1〉 =
∫

1

0
x dx = 1/2, then c = 1/2. Consequently w(x) = x − 1

2
is

orthogonal to the function 1. Therefore v1(x) = 1 and v2(x) = x − 1

2
is an

orthogonal basis.

Because ‖v1‖2 =
∫

1

0
12 dx = 1 and ‖v2‖2 =

∫

1

0
(x − 1

2
)2 dx = 1

12
, an orthonormal

basis is e1(x) = 1 and e2(x) =
√

12(x − 1

2
).

b) Find a linear polynomial g(x) = a + bx that best approximates x2 in the norm
defined by this inner product.

Solution: The best approximation (in this norm) of f(x) = x2 by a funcrion of
the form a + bx is the orthogonal projection of x2 into this space. We thus seek
constants α and β so that

x2 = αe1(x) + βe2(x) + w(x), (1)
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where w(x) is orthogonal to 1 and x , or equivalently, to e1 and e2 . To find α and
β , as usual we take the inner product of (1) with e1 and e2 to find

α = 〈x2, e1〉 =

∫

1

0

x2·1 dx =
1

3
and β = 〈x2, e2〉 =

√
12

∫

1

0

x2

(

x − 1

2

)

=

√
12

12
=

1√
12

.

Thus the best approximation (using this inner product) is 1

3
+

(

x − 1

2

)

.

5. [Bretscher, Sec. 5.5 #20]. In R
2 consider the inner product ≪ ~v, ~w ≫:=

~vT

(

1 2
2 8

)

~w with corresponding norm |||~v|||2 :=≪ ~v, ~v ≫ .

a) Find all vectors in R
2 that are orthogonal to ~v :=

(

1
0

)

.

Solution: The condition ~w :=

(

w1

w2

)

being orthogonal to ~v means

0 =≪ ~v, ~w ≫=
(

1 0
)

(

1 2
2 8

)(

w1

w2

)

= w1 + 2w2,

so ~w = c

(

−2
1

)

where c is any scalar.

b) Find an orthonormal basis for R
2 with respect to this inner product.

Solution: The vectors ~v and ~w are an orthogonal basis. To get an orthonormal
basis we just make them into unit vectors – using the norm associated with this

new inner product |||~v|||2 :=≪ ~v, ~v ≫= ~vT

(

1 2
2 8

)

~v . Then |||~v|||2 = 1 and

|||~w|||2 = 4c2 so one orthonormal basis is

e1 =

(

1
0

)

e2 =

(

−1
1/2

)

.

6. [Bretscher, Sec. 5.5 #24]. Using the inner product of problem 4, for the polyno-
mials f , g , and h say we are given the following table of inner products:

〈 , 〉 f g h

f 4 0 8

g 0 1 3

h 8 3 50

For example, 〈g, h〉 = 〈h, g〉 = 3. Let E be the span of f and g .
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a) Compute 〈f , g + h〉 .
Solution: 〈f , g + h〉 = 0 + 8 = 8.

b) Compute ‖g + h‖ .

Solution: ‖g + h‖2 = 1 + 2 · 3 + 50 = 57 so ‖g + h‖ =
√

57

c) Find projEh . [Express your solution as linear combinations of f and g .]

Solution: Since f and g are orthogonal, they are an orthogonal basis for E .
Thus projEh = af + bg for some constants a and b , that is,

h = af + bg + w, (2)

for some w ⊥ E . To find a and b , as usual we take the inner product of both sides
with f and g and get

a =
〈h, f〉
‖f‖2

=
8

4
= 2, b =

〈h, g〉
‖g‖2

=
3

1
= 3.

Therefore,
projEh = 2f + 3g

d) Find an orthonormal basis of the span of f , g , and h [Express your results as
linear combinations of f , g , and h .]

Solution: Since f and g are orthogonal and, from equation (2), w is orthogonal
to both f and g , we find that f , g , and w are an orthogonal bases. To get an
orthonormal basis we need only normalize these. From (2),

‖h‖2 = ‖2f‖2 + ‖3g‖2 + ‖w‖2

so ‖w‖2 = 50 − 4 · 4 − 9 · 1 = 25. Therefore an orthonormal basis is

e1 := 1

2
f , e2 := g, e3 := 1

5
w = 1

5
(h − 2f − 3g).

7. [ Like Bretscher, Sec. 5.5 #26 & 28]. Use the inner product 〈f, g〉 =
∫

π

−π
f(x)g(x) dx .

Define

f(x) =

{

−1 if −π < x ≤ 0,

1 if 0 < x ≤ π,

and extend f to all of R as period is with period 2π : f(x + 2π) = f(x). This is called
a square wave.

a) Compute the first N terms in the Fourier Series

f(x) = A0 +
N

∑

k=1

[Ak cos kx + Bk sin kx] + RN (x), (3)
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where the remainder, RN (x), is orthogonal to 1, cos kx , sin ℓx , k, ℓ = 1, 2, . . . , N .

Solution: We use that with this inner product, the functions

1, cos kx, and sin ℓx, k, ℓ = 1, 2, 3, . . .

are orthogonal with ‖1‖2 = 2π , and ‖cos kx‖2 = ‖sin ℓx‖2 = π .
Then, taking the inner product of equation (3) with the cos jx ’s and sinℓ ’s we
obtain

A0 =
〈f, 1〉
2π

, Ak =
〈f, cos kx〉

π
, Bk =

〈f, sin kx〉
π

.

Since our function f(x) is odd, by Problem 3 we know that Ak = 0 for k =
0, 1, 2, 3. . . . and

Bk = −
∫

0

−π

sin kx

π
dx +

∫

π

0

sin kx

π
dx

=2

∫

π

0

sin kx

π
dx =

−2 cos kx

π

∣

∣

∣

∣

π

0

=
2

π
[1 − (−1)k] =

{

4

kπ
if k is odd

0 if k is even

Therefore, for N = 2K + 1,

f(x) =
4

π

[

sinx

1
+

sin 3x

3
+ · · · + sin(2K + 1)x

2K + 1

]

+ R2K+1(x),

where RN isorthogonal to the preceeding terms.

See http://mathworld.wolfram.com/FourierSeriesSquareWave.html for an in-
teresting graph of how this Fourier series converges to the square wave.

b) Apply the Pythagorean Theorem 5.5.6 (page 343) to your answer.

Solution: Because the terms in equation (3) are orthogonal, the Phythagoread
theorem gives

‖f‖2 = 2π|A0|2 + π
N

∑

k=1

[

|Ak|2 + |Bk|2
]

+ ‖RN‖2.

Applied to this example, where ‖f‖2 = 2π and assuming (without proof here that
‖RN‖ → 0) it gives:

2π = π
16

π2

[

1 +
1

32
+

1

52
+

1

72
+ · · ·

]

,

that is,

1 +
1

32
+

1

52
+

1

72
+ · · · =

π2

8
,

which one would not likely guess.
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8. Compute the determinant of the upper triangular matrix

A =















a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n

...
...

...
. . .

...
0 0 0 · · · ann















[Do the cases n = 2 and n = 3 first.]

Solution: Expamding by minors using the first column gives

det A = a11(−1)1+1 det











a22 a23 · · · a2n

0 a33 · · · a3n

...
...

. . .
...

0 0 · · · ann











Repeating this we find that detA = a11a22 · · · ann , so for an upper (or lower) triangular
matrix, the determinant is the product of the diagonal elements.

9. The n × n matrices A and B are similar if there is and invertible n × n matrix S so
that B = SAS−1 . If A and B are similar, show that detB = det A .

Solution: Since for any n × n matrices det(MN) = (det M)(det N) = det(NM),
then

detB = det(SAS−1) = det(S) det(AS−1) = detS det S−1 det(A) = det A.

[Last revised: March 9, 2014]
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