Problem Set 9

Due: In class Tuesday, Nov. 27 Late papers will be accepted until 12:00 on Thursday (at the beginning of class).

1. Suppose that λ is an eigenvalue of an $n \times n$ matrix A and let E_{λ} and let E_{λ} be the set of all eigenvectors with the same eigenvalue λ. Show that E_{λ} is a linear subspace of \mathbb{R}^{n}.
2. Let A be a 2×2 real matrix whose eigenvalues are not real.
a) Suppose one of the eigenvalues has absolute value 1. Explain why the other must as well.
b) Explain why A must be diagonalizable.
3. This asks you to come up with four examples. In each case, find a matrix (perhaps 2×2) that is:
a) Both invertible and diagonalizable.
b) Not invertible, but diagonalizable.
c) Not diagonalizable but is invertible.
d) Neither invertible nor diagonalizable.
4. If the matrices A and B are similar and if $A^{3}=0$, must $B^{3}=0$? Proof or counterexample.
5. In a large city, a car rental company has three locations: the Airport, the City, and the Suburbs.

One has data on which location the cars are returned daily:

- Rented at Airport: 2% are returned to the City and 25% to the Suburbs. The rest are returned to the Airport.
- Rented in City : 10% returned to Airport, 10% returned to Suburbs.
- Rented in Suburbs: 25% are returned to the Airport and 2% to the city.

If initially there are 35 cars at the Airport, 150 in the city, and 35 in the suburbs, what is the long-term distribution of the cars?
6. Let R be a (real) 3×3 orthogonal matrix.
a) Show that the eigenvalues, λ, which may be complex, all have absolute value 1 .
b) If $\operatorname{det} R=1$ show that $\lambda=1$ is one of the eigenvalues of R and that if $R \neq I$, no other eigenvalue can be 1 .
For the remainder of this problem assume $\operatorname{det} R=1$ and $R \neq I$.
c) Let N be an eigenvector corresponding to $\lambda=1$ and let Q be the plane of all vectors orthogonal to N. Show that R maps Q to Q.
d) Why does this show that R is a rotation of the plane Q with N as the axis of rotation?
7. [Bretscher, Sec. 7.1 \#36] Find a 2×2 matrix A such that $\binom{3}{1}$ and $\binom{1}{2}$ are eigenvectors with corresponding eigenvalues 5 and 10 .
8. [BRETSCHER, SEc. 7.1 \#38] We are told that $\left(\begin{array}{r}1 \\ -1 \\ -1\end{array}\right)$ is an eigenvector of the matrix $\left(\begin{array}{ccc}4 & 1 & 1 \\ -5 & 0 & -3 \\ -1 & -1 & 2\end{array}\right)$. What is the associated eigenvalue?
9. [BRETSChER, Sec. 7.2 \#12] Find all of the eigenvalues of $\left(\begin{array}{cccc}2 & -2 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 3 & -4 \\ 0 & 0 & 2 & -3\end{array}\right)$ and determine their algebraic multiplicity.
10. [Bretscher, Sec. 7.2 \#14] Consider a 4×4 matrix $A:=\left(\begin{array}{cc}B & C \\ 0 & D\end{array}\right)$, where B, C, and D are 2×2 matrices. What is the relationship between the eigenvalues of A, B, C, and D ?
11. The characteristic polynomial $p_{A}(\lambda)$ of A is

$$
\begin{equation*}
p_{A}(\lambda):=\operatorname{det}(A-\lambda I)=(-\lambda)^{n}+c_{n-1}(-\lambda)^{n-1}+\cdots+c_{0}, \tag{1}
\end{equation*}
$$

Caution: many books define the characteristic polynomial as $\operatorname{det}(\lambda I-A)$, which changes some signs.) In class we showed that similar matrices have the same characteristic polynomial.
Recall that the trace of a matrix $A=\left(a_{i j}\right)$ is the sum of the diagonal elements: $\operatorname{trace}(A)=a_{11}+a_{22}+\cdots+a_{n n}$. In this problem you will see that the trace and determinant of A are two of the coefficients in the characteristic polynomial.
a) Show that $c_{0}=\operatorname{det}(A)$.
b) Since also the eigenvalues of A are the roots of the characteristic polynomial, show that the trace of A is the sum of its eigenvalues:

$$
\operatorname{trace}(A)=\lambda_{1}+\cdots+\lambda_{n}
$$

These are the coefficient of $(-\lambda)^{n-1}$. [Although this is true for all n., only do this for $n=3$. The procedure in the general case is identical.]
12. Let A be the transition matrix of a Markov Chain. If $\vec{v}:=(1,1 \ldots, 1)^{T}$ show that $A^{*} \vec{v}=\vec{v}$.

Why does this imply that $\lambda=1$ is an eigenvalue of A ? Thus if A is the transition matrix of any Markov Chain, $\lambda=1$ is always an eigenvalue.
13. Say a sequence $x=\left\{x_{0}, x_{1}, x_{2}, x_{3}, \ldots\right\}$ has the properties $x_{0}=0, x_{1}=1$, and, recursively, $x_{k+2}=x_{k+1}+x_{k}$ for $k=0,1,2,3 \ldots$ For instance, $x_{2}=1, x_{3}=2$, $x_{4}=3$, etc. Let $u_{k}=x_{k}, v_{k}=x_{k+1}$ and write $W_{k}:=\binom{u_{k}}{v_{k}}$. Note $W_{0}=\binom{0}{1}$.
a) Show that

$$
W_{k+1}=\binom{v_{k}}{v_{k}+u_{v}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) W_{k}
$$

b) Let A denote the 2×2 matrix above. Show that $W_{k+1}=A^{k} W_{1}$.
c) Diagonalize A and use this to compute A^{k} and thus W_{k} explicitly.
d) Use this to get an explicit formula for x_{k}.
14. [BRETSCHER, SEC. $7.3 \# 28$] Let $B:=\left(\begin{array}{cccc}k & 1 & 0 & 0 \\ 0 & k & 1 & 0 \\ 0 & 0 & k & 1 \\ 0 & 0 & 0 & k\end{array}\right)$ where k is an arbitrary constant. Find the eigenvalue(s) of B and determine both their algebraic and geometric multiplicities. [NOTE: First try the analogous 2×2 case.]
15. [Bretscher, Sec. $7.4 \# 21-22]$ Let $A=\left(\begin{array}{ll}1 & a \\ 0 & 2\end{array}\right)$ and $B:=\left(\begin{array}{ll}1 & a \\ 0 & b\end{array}\right)$. For which choices of the constants a and b are these diagonalizable?

Remark I found the problems Bretscher, Sec. 7.3 \#43-44 and many other applications at the end of Section 7.3 interesting. You might too. These are not assigned.

Bonus Problem

[Please give this directly to Professor Kazdan]
1-B Let \mathcal{S} be the space of smooth real-valued functions $u(x)$ that periodic with period 2π, so $u(x+2 \pi)=u(x)$ for all $x \in \mathbb{R}$ with the inner product $\langle f, g\rangle:=\int_{-\pi}^{\pi} f(x) g(x) d x$. Let $D: \mathcal{S}: \rightarrow \int$ be the derivative operator, $D u=d u / d x$ and let $L:=-D^{2}$.
a) Find the adjoints of both D and L. Note that by definition, the adjoint A^{*} of a linear map A is the map that satisfies the identity $\langle v, A w\rangle=\left\langle A^{*} v, w\right\rangle$ for all v and w. [Hint: Integrate by parts].
b) Find the eigenfunctions $u_{k}(x)$ and corresponding eigenvalues, λ_{k} of L, so $u(x)$ is 2π periodic and $L u_{k}=\lambda_{k} u_{k}$.
c) Use the result of the previous part to conclude that if $k \neq \ell$ are integers, then $\sin k x$ is orthogonal to $\sin \ell x$ and $\cos \ell x$.
[Last revised: December 10, 2012]

