
Math 312, Fall 2012 Jerry L. Kazdan

Problem Set 9

Due: In class Tuesday, Nov. 27 Late papers will be accepted until 12:00 on Thursday (at

the beginning of class).

1. Suppose that � is an eigenvalue of an n � n matrix A and let E� be the set of all
eigenvectors with the same eigenvalue � . Show that E� is a linear subspace of Rn .

Solution: Say that both ~v and ~w are in E� . We need to show that both c~v and
~v + ~w are in E� cor any scalar c .

Now A(c~v) = cA~v = c�~v = �(c~v so c~v 2 E� .

Also, A(~v + ~w) = A~v +A~w = �~v + �~w = �(~v + ~w). Thus ~v + ~w 2 E� .

2. Let A be a 2� 2 real matrix whose eigenvalues are not real.

a) Suppose one of the eigenvalues has absolute value 1. Explain why the other must
as well.

Solution: Let � = �+ i� be a complex eigenvalue with � 6= 0. Since A is real,
then its complex conjugate, �� = �� i� is also an eigenvalue. But j��j = j�j = 1.

b) Explain why A must be diagonalizable.

Solution: Since the eigenvalues of A are distinct, it is diagonalizable.

3. This asks you to come up with four examples. In each case, �nd a matrix (perhaps
2� 2) that is:

a) Both invertible and diagonalizable.

Solution: The identity matrix, I ; the matrix

�
1 2
0 3

�
.

b) Not invertible, but diagonalizable.

Solution: The zero matrix, 0; the matrix

�
1 2
0 0

�
.

c) Not diagonalizable but is invertible.

Solution:

�
1 2
0 1

�
.

d) Neither invertible nor diagonalizable.

Solution:

�
0 1
0 0

�
.

4. If the matrices A and B are similar and if A3 = 0, must B3 = 0? Proof or counterex-
ample.

Solution: True. Since B = S�1AS for some S , then B3 = S�1A3S = 0.
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5. In a large city, a car rental company has three locations: the Airport, the City, and the
Suburbs.

One has data on which location the cars are returned daily:

� Rented at Airport: 2% are returned to the City and 25% to the Suburbs.
The rest are returned to the Airport.

� Rented in City : 10% returned to Airport, 10% returned to Suburbs.

� Rented in Suburbs: 25% are returned to the Airport and 2% to the city.

If initially there are 35 cars at the Airport, 150 in the city, and 35 in the suburbs,
what is the long-term distribution of the cars?

Solution: Lat Ak , Ck , and Sk be the number of cars on day k at the Airport, City,
and Suburbs, respectively. Then

Ak+1 =:73Ak + :10Ck + :25Sk

Ck+1 =:02Ak + :80Ck + :02Sk

Sk+1 =:25Ak + :10Ck + :73Sk

Thus the transition matrix T is: T =

0
@:73 :10 :25
:02 :80 :02
:25 :10 :73

1
A :

To �nd the he eigenvector P with eigenvalue 1 one needs to solve:

�27A+ 10C + 25S =0

2A� 20C + 2S =0

25A+ 10C � 27S =0

This gives A = S = 5C .

In addition, since P is supposed to be a probability vector, A + C + S = 1. Thus
C = 1=11so A = S = 5=11.

Using the initial state, there are 35 + 150 + 35 = 220 cars in all. Thus in the long run:

city: 220/11=20 cars
airport: 100 cars
suburbs: 100 card.

6. Let R be a (real) 3� 3 orthogonal matrix.

a) Show that the eigenvalues, � , which may be complex, all have absolute value 1.

Solution: Since R is an orthogonal matrix, then kR~vk = k~vk for every vector
~v . In particular, if R~v = �~v , then k~vk = k�~vk = j�jk~vk so j�j = 1.
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b) If detR = 1 show that � = 1 is one of the eigenvalues of R and that if R 6= I , no
other eigenvalue can be 1.

Solution: Since R is a real matrix, either two of its eigenvalues are complex or
none are.

Case 1 Two complex eigenvalues, say �1 and �2 , so �2 = ��1 and then �1�2 = 1.
Since 1 = detR = �1�2�3 , then �3 = 1.

Case 2 All three eigenvalues are real. Since the real eigenvalues can only have
values �1, the only possibilities are

1; 1; 1; 1; 1; �1; 1; �1; �1; �1; �1; �1:

Because detR = 1 and R 6= I , the only possibility is 1; �1; �1 .
For the remainder of this problem assume detR = 1 and R 6= I .

c) Let N be an eigenvector corresponding to � = 1 and . let Q be the plane of all
vectors orthogonal to N . Show that R maps Q to Q .

Solution: An orthogonal matrix preserves the inner product: hR~x; R~yi = h~x; ~yi
for all vectors ~x , ~y . Thus, since R ~N = ~N , if ~x 2 Q , so h~x; ~Ni = 0, then

hR~x; ~Ni = hR~x; R ~Ni = h~x; ~Ni = 0;

that is, R~x 2 Q .

d) Why does this show that R is a rotation of the plane Q with N as the axis of
rotation?

Solution: Q is a two dimensional plane and R is an orthogonal transformation
from Q to itself. Thus R acts on Q as either a rotation or a reection. Since
detR = 1, it is a rotation.

7. [Bretscher, Sec. 7.1 #36] Find a 2 � 2 matrix A such that

�
3
1

�
and

�
1
2

�
are

eigenvectors with corresponding eigenvalues 5 and 10.

Solution: There are several approaches. Here is one. Since A can be diagonalized (it

has a basis of eigenvectors) the matrix S =

�
3 1
1 2

�
whose columns are the eigenvectors

of A has the property that S�1AS = D , where D is the diagonal matrix whose elements
are 5 and 10. Thus

A = SDS�1 =

�
3 1
1 2

��
5 0
0 10

�
1

5

�
2 �1

�1 3

�
=

�
4 3

�2 11

�
:
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8. [Bretscher, Sec. 7.1 #38] We are told that

0
@ 1
�1
�1

1
A is an eigenvector of the matrix

M :=

0
@ 4 1 1
�5 0 �3
�1 �1 2

1
A . What is the associated eigenvalue?

Solution: 0
@ 4 1 1
�5 0 �3
�1 �1 2

1
A
0
@ 1
�1
�1

1
A =

0
@ 2
�2
�2

1
A = 2

0
@ 1
�1
�1

1
A

so the eigenvalue is 2.

9. [Bretscher, Sec. 7.2 #12] Find all of the eigenvalues of M :=

0
BB@
2 �2 0 0
1 �1 0 0
0 0 3 �4
0 0 2 �3

1
CCA

and determine their algebraic multiplicity.

Solution:

det(M � �I) =det

�
2� � �2
1 �1� �

�
det

�
3� � �4
2 �3� �

�
=(�2 � �)(�2 � 1):

The eigenvalues are thus 0, 1, 1, �1. The eigenvalue 1 has algebraic multiplicity 2,
the others have algebraic multiplicity 1.

For this example the geometric multiplicities agree with the algebraic multiplicities so
the matrix can be diagonalized.

10. [Bretscher, Sec. 7.2 #14] Consider a 4 � 4 matrix A :=

�
B C
0 D

�
, where B , C ,

and D are 2� 2 matrices. What is the relationship between the eigenvalues of A , B ,
C , and D?

Solution: First a preliminary result. In the above notation, if M :=

�
R S
0 T

�
, then

detM = (detR)(detT ).

Case 1: If R is not invertible then its columns { and hence the corresponding columns
of M { are linearly dependent so both detR = 0 and detM = 0.

Case 2: R is invertible. This is an exercise in block multiplication of matrices. Let X
be an unknown 2� 2 matrix. Then�

R S
0 T

��
I X
0 I

�
=

�
R RX + S
0 T

�
:
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Since R is invertible we can pick X so that RX + S = 0. The result should now be
clear.

Applying this to M := A = �I we conclude that the eigenvalues of A , including their
algebraic multiplicities, are exactly those determined by B and D . Note, however,
that even if both B and D are diagonalizable, A may not be. The simplest example

is B = D = 0 and C =

�
0 1
0 0

�
.

11. The characteristic polynomial pA(�) of A is

pA(�) := det(A� �I) = (��)n + cn�1(��)n�1 + � � �+ c0; (1)

Caution: many books de�ne the characteristic polynomial as det(�I�A), which changes
some signs.) In class we showed that similar matrices have the same characteristic
polynomial.

Recall that the trace of a matrix A = (aij) is the sum of the diagonal elements:
trace(A) = a11 + a22 + � � � + ann . In this problem you will see that the trace and
determinant of A are two of the coe�cients in the characteristic polynomial.

a) Show that c0 = det(A).

Solution: Let � = 0 in equation (1).

b) Since also the eigenvalues of A are the roots of the characteristic polynomial, show
that the trace of A is the sum of its eigenvalues:

trace(A) = �1 + � � �+ �n:

These are the coe�cient cn�1 of (��)n�1 . [Although this is true for all n ., only
do this for n = 3. The procedure in the general case is identical.]

Solution: In the case of n = 3, the characteristic polynomial is a cubic. We
compute the coe�cient of �2 for both sides of equation (1). First we expand
det(�I �A) by minors using the �rst column:

pA(�) =det

0
@a11 � � a12 a13

a21 a22 � � a23
a31 a32 a33 � �

1
A

=(a11 � �) det

�
a22 � � a23
a32 a33 � �

�
� a21 det

�
a12 a13
a32 a33 � �

�
+ a31 det

�
a12 a13
a32 a33 � �

�
:

Note that the second and third terms on the last line do not contribute any
quadratic terms in � so we can ignore them. We indicate such terms by writ-
ing + � � � . Continuing from above

pA(�) =(a11 � �)(a22 � �)(a33 � �) + � � �
=� �3 + (a11 + a22 + a33)�

2 + � � � (2)
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Next we factor pA(�) using its roots, the eigenvalues �j . The computation is
similar to that above.

pA(�) = (�1 � �)(�2 � �)(�3 � �) = ��3 + (�1 + �2 + �3)�
2 + � � � : (3)

Comparing the coe�cient of �2 in equations (2) and (3) we conclude that the trace
of a matrix is the sum of its eigenvalues.

12. Let A be the transition matrix of a Markov Chain. If ~v := (1; 1: : : : ; 1)T show that
A�~v = ~v .

Why does this imply that � = 1 is an eigenvalue of A? Thus if A is the transition
matrix of any Markov Chain, � = 1 is always an eigenvalue.

Solution: Since the sum of the elements in each column of A is 1, the sum of the
elements in each row of A� is 1. This is exactly the same as A�~v = ~v .

Because for any matrix A the eigenvalues of A and A� are the same, we conclude that
1 is an eigenvalue of A .

13. Say a sequence x = fx0; x1; x2; x3; : : :g has the properties x0 = 0, x1 = 1, and,
recursively, xk+2 = xk+1 + xk for k = 0; 1; 2; 3 : : : . For instance, x2 = 1, x3 = 2, etc.

Let uk = xk , vk = xk+1 and write Wk :=

�
uk
vk

�
. Note W0 =

�
0
1

�
.

a) Show that

Wk+1 =

�
vk

vk + uv

�
=

�
0 1
1 1

�
Wk:

Solution: Since vk+1 = xk+2 = xk + xk+1 = uk + vk , then

Wk+1 =

�
uk+1
vk+1

�
=

�
vk

uk + vk

�
=

�
0 1
1 1

�
Wk = AWk;

where A is the evident 2� 2 matrix.

b) Let A denote the 2� 2 matrix above. Show that Wk = AkW0 .

Solution: W2 = AW1 = A2W0 , W3 = AW2 = A3W0 , etc.

c) Diagonalize A and use this to compute Ak and thus Wk explicitly.

Solution: The characteristic polynomial of A gives �2 � � � 1 = 0, so �� =

1

2
(1 � p

5. The corresponding eigenvectors are ~v+ =

�
1
�+

�
and ~v� =

�
1
��

�
.

Then S�1AS = D , where D =

�
�+ 0
0 ��

�
, and the change of coordinates matrix
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is S =

�
1 1
�+ ��

�
whose columns are the corresponding eigenvectors of A . Thus

A = SDS�1 . Therefore, using �+�� = �1,

Ak = SDkS�1 =

�
1 1
�+ ��

��
�k+ 0
0 �k�

� �1p
5

�
�� �1
��+ 1

�

=
1p
5

�
�k�1+ � �k�1� �k+ � �k�
�k+ � �k� �k+1+ � �k+1�

�
:

Therefore

Wk = AkW0 =
1p
5

�
�k+ � �k�

�k+1+ � �k+1�

�
:

d) Use this to get an explicit formula for xk .

Solution: Since xk = uk , then xk is the �rst component of Wk ,

xk =
1p
5

�
�k+ � �k�

�
=

1p
5

2
4 1 +

p
5

2

!k

�
 
1�p

5

2

!k
3
5 :

It is interesting that although by the recursive formula xk+2 = xk + xk+1 the xk
are clearly integers, the explicit formula we just found involves

p
5.

14. [Bretscher, Sec. 7.3 #28] Let B :=

0
BB@
k 1 0 0
0 k 1 0
0 0 k 1
0 0 0 k

1
CCA where k is an arbitrary con-

stant. Find the eigenvalue(s) of B and determine both their algebraic and geometric
multiplicities. [Note: First try the analogous 2� 2 case.]

Solution: Since B is upper triangular its eigenvalues are �1 = �2 = �3 = �4 = k
(so the algebraic multiplicity is 4).

To determine the geometric multiplicity we want the dimension of the kernel of B�kI ,
that is, the solutions of 0

BB@
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1
CCA
0
BB@
v1
v2
v3
v4

1
CCA =

0
BB@
0
0
0
0

1
CCA :

Clearly v1 can be anything, while v2 = v3 = v4 = 0. Thus the kernel is just multiples
of ~v = (1; 0; 0; 0) and is one dimensional. The geometric dimension of this eigenvalue
is 1.

15. [Bretscher, Sec. 7.4 #21-22] Let A =

�
1 a
0 2

�
and B :=

�
1 a
0 b

�
. For which

choices of the constants a and b are these diagonalizable?
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Solution: The matrix A has distinct eigenvalues 1 and 2 so it can be diagonalized
for any choice of a .

Similarly for B , if b 6= 1, it can be diagonalized for any choice of a . However, if b = 1,
then � = 1 has algebraic multiplicity 2 but if a 6= 0 it has geometric multiplicity 1. It
can be diagonalized if and only if a = 0.

Remark I found the problems Bretscher, Sec. 7.3 #43-44 and many other applications at
the end of Section 7.3 interesting. You might too. These are not assigned.

Bonus Problem

[Please give this directly to Professor Kazdan]

1-B Let S be the space of smooth real-valued functions u(x) that periodic with period 2� ,
so u(x + 2�) = u(x) for all x 2 R with the inner product hf; gi := R �

��
f(x)g(x) dx .

Let D : S :! s be the derivative operator, Du = du=dx and let L := �D2 .

a) Find the adjoints of both D and L . Note that by de�nition, the adjoint A� of a
linear map A is the map that satis�es the identity hv; Awi = hA�v; wi for all v
and w . [Hint: Integrate by parts].

b) Find the eigenfunctions uk(x) and corresponding eigenvalues, �k of L , so u(x) is
2� periodic and Luk = �kuk .

c) Use the result of the previous part to conclude that if k 6= ` are integers, then
sin kx is orthogonal to sin `x and cos `x .

[Last revised: December 10, 2012]
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