Math 312, Fall 2012 Jerry L. Kazdan

Problem Set 9
DuE: In class Tuesday, Nov. 27 Late papers will be accepted until 12:00 on Thursday (at
the beginning of class).

1. Suppose that A is an eigenvalue of an n X n matrix A and let F) be the set of all
eigenvectors with the same eigenvalue A. Show that E) is a linear subspace of R”.

SOLUTION: Say that both ¥ and @ are in F). We need to show that both ¢t and
U 40 are in E) cor any scalar c.

Now A(ct) = cAT = e\l = A\(c¥ so ¢ € F).

Also, A( + @) = AT + A = A\F + M = (5 + ). Thus 7+ 7 € Ey.

2. Let A be a 2 x 2 real matrix whose eigenvalues are not real.

a) Suppose one of the eigenvalues has absolute value 1. Explain why the other must
as well.

SOLUTION: Let A = a+4f be a complex eigenvalue with 3 # 0. Since A is real,
then its complex conjugate, A = o — i is also an eigenvalue. But |A\| = |A| = 1.

b) Explain why A must be diagonalizable.

SOLUTION: Since the eigenvalues of A are distinct, it is diagonalizable.

3. This asks you to come up with four examples. In each case, find a matrix (perhaps
2 x 2) that is:

a) Both invertible and diagonalizable.

SOLUTION: The identity matrix, I; the matrix (é 2) .
b) Not invertible, but diagonalizable.

SOLUTION: The zero matrix, 0; the matrix ([1) 2) .

¢) Not diagonalizable but is invertible.

SOLUTION: L2
: 0 1)

d) Neither invertible nor diagonalizable.
SOLUTION: 01
: 0 0/

4. If the matrices A and B are similar and if A% =0, must B® = 07 Proof or counterex-
ample.

SOLUTION: True. Since B = S~1AS for some S, then B3 = §71435 =0.



5. In a large city, a car rental company has three locations: the Airport, the City, and the
Suburbs.

One has data on which location the cars are returned daily:
e RENTED AT AIRPORT: 2% are returned to the City and 25% to the Suburbs.
The rest are returned to the Airport.
e RENTED IN CITY : 10% returned to Airport, 10% returned to Suburbs.
e RENTED IN SUBURBS: 25% are returned to the Airport and 2% to the city.

If initially there are 35 cars at the Airport, 150 in the city, and 35 in the suburbs,
what is the long-term distribution of the cars?

SOLUTION: Lat Ag, Ck, and Sk be the number of cars on day k at the Airport, City,
and Suburbs, respectively. Then

Apr1 =734, + . 10C, + 255
Ciri1 =.024; + .80C) + .025;,
Sk+1 =.25A; + .10C), + .735;

73 .10 .25
Thus the transition matrix Tis: T = [ .02 .80 .02
.25 .10 .73

To find the he eigenvector P with eigenvalue 1 one needs to solve:

—27A 4+ 10C' 4255 =0
2A-20C+ 25 =0
254+ 10C — 275 =0

This gives A =S5 = 5C'.
In addition, since P is supposed to be a probability vector, A + C' + S = 1. Thus
C=1/11s0 A= S =5/11.
Using the initial state, there are 354 150 4+ 35 = 220 cars in all. Thus in the long run:
city: 220/11=20 cars
airport: 100 cars
suburbs: 100 card.

6. Let R be a (real) 3 x 3 orthogonal matrix.
a) Show that the eigenvalues, A, which may be complex, all have absolute value 1.

SOLUTION: Since R is an orthogonal matrix, then ||R#|| = ||¥]| for every vector
¥. In particular, if Rv = A0, then [|9] = ||\T]| = |A|||7]] so |A\|=1.



b) If det R =1 show that A = 1 is one of the eigenvalues of R and that if R # I, no
other eigenvalue can be 1.

SOLUTION: Since R is a real matrix, either two of its eigenvalues are complex or
none are.

CASE 1 Two complex eigenvalues, say A; and Ag, s0 A\a = A\; and then A\j\o = 1.
Since 1 = det R = Aj A3, then A3 =1.

CASE 2 All three eigenvalues are real. Since the real eigenvalues can only have
values =£1, the only possibilities are

1, 1,1, 1,1, —1, 1, -1, —1, -1, -1, —1.
Because det R =1 and R # I, the only possibility is 1, —1, —1.

For the remainder of this problem assume det R=1 and R # I.

¢) Let N be an eigenvector corresponding to A = 1 and . let @ be the plane of all
vectors orthogonal to N. Show that R maps Q to Q.

SOLUTION:  An orthogonal matrix preserves the inner product: (RZ, Ry) = (Z, 7))
for all vectors Z, §. Thus, since RN = N, if Z € Q, so (Z, N) =0, then
(RZ, N) = (RZ, RN) = (#, N) = 0,

that is, RZ € Q.

d) Why does this show that R is a rotation of the plane @@ with N as the axis of
rotation?

SOLUTION: (@ is a two dimensional plane and R is an orthogonal transformation
from @ to itself. Thus R acts on ) as either a rotation or a reflection. Since
det R =1, it is a rotation.

. . 1
. [BRETSCHER, SEC. 7.1 #36] Find a 2 x 2 matrix A such that (i’) and (2) are
eigenvectors with corresponding eigenvalues 5 and 10.
SOLUTION: There are several approaches. Here is one. Since A can be diagonalized (it

1 .
:i 2) whose columns are the eigenvectors

of A has the property that S~ AS = D, where D is the diagonal matrix whose elements
are 5 and 10. Thus

L (3 1\(5 0N1/ 2 -1\ _( 4 3
A=5D5 <1 2)(0 10)5(—1 3)‘(—2 11)‘

has a basis of eigenvectors) the matrix S = (



8.

10.

1

[BRETSCHER, SEC. 7.1 #38] We are told that [ —1 | is an eigenvector of the matrix
—1
4 1 1
M:=|-5 0 —3). What is the associated eigenvalue?
-1 -1 2
SOLUTION:
4 1 1 1 2 1
-5 0 =3 -1 =1-2]= -1
-1 -1 2 —1 -2 —1

so the eigenvalue is 2.

2 -2 0 0
[BRETSCHER, SEC. 7.2 #12] Find all of the eigenvalues of M := (1) _01 g _04
0O 0 2 -3

and determine their algebraic multiplicity.

SOLUTION:
2—-X =2 3—-x -4
det(M—)\I)—det( 1 _1_>\> det( 5 _3_>\>
=(A2 =N\ =1).

The eigenvalues are thus 0, 1, 1, —1. The eigenvalue 1 has algebraic multiplicity 2,
the others have algebraic multiplicity 1.

For this example the geometric multiplicities agree with the algebraic multiplicities so
the matrix can be diagonalized.

B C
0 o)
and D are 2 x 2 matrices. What is the relationship between the eigenvalues of A, B,
C,and D?

[BRETSCHER, SEC. 7.2 #14] Consider a 4 x 4 matrix A := ( , where B, C,

. . . R S
SOLUTION: First a preliminary result. In the above notation, if M := ( ) , then

0 T
det M = (det R)(det T').

Case 1: If R is not invertible then its columns — and hence the corresponding columns
of M — are linearly dependent so both det R =0 and det M = 0.

Case 2: R is invertible. This is an exercise in block multiplication of matrices. Let X
be an unknown 2 x 2 matrix. Then

966"

4



11.

Since R is invertible we can pick X so that RX + 5§ = 0. The result should now be
clear.

Applying this to M := A = Al we conclude that the eigenvalues of A, including their
algebraic multiplicities, are exactly those determined by B and D. Note, however,
that even if both B and D are diagonalizable, A may not be. The simplest example

. 0 1
1bB—D—0andC—(0 0).

The characteristic polynomial p4(A) of A is
pa(X) = det(A = AI) = (=A)" + cpm1 (A" H - o, (1)

Caution: many books define the characteristic polynomial as det(AI—A), which changes
some signs.) In class we showed that similar matrices have the same characteristic
polynomial.

Recall that the trace of a matrix A = (a;;) is the sum of the diagonal elements:
trace(A) = a11 + a92 + -+ + apn. In this problem you will see that the trace and
determinant of A are two of the coefficients in the characteristic polynomial.

a) Show that ¢y = det(A).
SOLUTION: Let A =0 in equation ([1)).
b) Since also the eigenvalues of A are the roots of the characteristic polynomial, show
that the trace of A is the sum of its eigenvalues:
trace(A) = Ay + -+ Ap.
These are the coefficient ¢, _1 of (—A\)" !. [Although this is true for all n., only
do this for n = 3. The procedure in the general case is identical.]

SOLUTION: In the case of n = 3, the characteristic polynomial is a cubic. We
compute the coefficient of A\? for both sides of equation . First we expand
det(AI — A) by minors using the first column:

all — A a2 a3
pA(A) :det asl agy — )\ aos
asy aza a3z — A
- A
:(011 — )\) det 422 423 — a91 det a2 a3 + a3y det a2
as2 azz — A azz a3z — A as2

Note that the second and third terms on the last line do not contribute any
quadratic terms in A so we can ignore them. We indicate such terms by writ-
ing +--- . Continuing from above

pa(A) =(a11 — N)(age — A)(azs — A) +---

2
=— XN+ (a1 + a2 + agg) A’ + - - @

a3
a3z — A

)



Next we factor p4(A) using its roots, the eigenvalues A;. The computation is
similar to that above.

A = (M =N = N3 =) = A+ M+ d+ )N+ . (3)

Comparing the coefficient of A? in equations and we conclude that the trace
of a matrix is the sum of its eigenvalues.

12. Let A be the transition matrix of a Markov Chain. If @ := (1,1....,1)T show that
A*G =4,

Why does this imply that A = 1 is an eigenvalue of A7 Thus if A is the transition
matrix of any Markov Chain, A =1 is always an eigenvalue.

SOLUTION: Since the sum of the elements in each column of A is 1, the sum of the
elements in each row of A* is 1. This is exactly the same as A*U = ¥.

Because for any matrix A the eigenvalues of A and A* are the same, we conclude that
1 is an eigenvalue of A.

13. Say a sequence xz = {zg, 1, ®9, T3,...} has the properties o = 0, z; = 1, and,
recursively, .o = zp1 + x5 for k=0, 1, 2,3 .... For instance, z9 = 1, z3 = 2, etc.
. 0
Let up =z, vp = zp41 and write Wy 1= (Zk> . Note Wy = <1> .
k

a) Show that

o Vk o 01
Wit = (W +uv) - (1 1) Wi

SOLUTION: Since vg4+1 = Thto = T + Tyl = U + vk, then

() (u5) - (0 ) am,
where A is the evident 2 x 2 matrix.

b) Let A denote the 2 x 2 matrix above. Show that W = A¥WWj.
SOLUTION: Wy = AW, = AWy, Wi = AW, = A3W,, etc.

c¢) Diagonalize A and use this to compute A* and thus W), explicitly.
SOLUTION: The characteristic polynomial of A gives A = X —1 =0, so A\ =
%(1 + /5. The corresponding eigenvectors are ¥, = ()\1+) and 7_ = ( 1 )

A
AL O

Then S~'AS = D, where D = ( 0 A

) , and the change of coordinates matrix



14.

15.

. 1 1 . .
is § = ( Y ) whose columns are the corresponding eigenvectors of A. Thus
+ —

A= SDS~!. Therefore, using Ay A_ = —1,

1 1 oo\ =1/ —1
k _ ko—1 _ + -
A =SS _(/\+ A—)(O Ak)\/g(—h 1)
R 2D L L S L]
VB AR SR kL pRRL

Therefore . .
1 AE—AF
Wi = AkWO = ﬁ ()\'Irji . /\k+1> .
d) Use this to get an explicit formula for zy.

SOLUTION: Since x = ug, then zj is the first component of Wy,

1 1 14+vV5 ‘ 1-5 k
w0 () - (57)

It is interesting that although by the recursive formula xyi9 = zx + k41 the zg
are clearly integers, the explicit formula we just found involves /5.

[BRETSCHER, SEC. 7.3 #28] Let B := where k is an arbitrary con-

k1 00
0 £ 1 0
0 0 k1
0 0 0 k
stant. Find the eigenvalue(s) of B and determine both their algebraic and geometric

multiplicities. [NOTE: First try the analogous 2 x 2 case.]
SOLUTION: Since B is upper triangular its eigenvalues are A\ = Ay = A3 = Ay = k
(so the algebraic multiplicity is 4).

To determine the geometric multiplicity we want the dimension of the kernel of B — &1,
that is, the solutions of

010 0\ (o 0
001 0] wl]_ |0
000 1] |uws] |0
000 0/ \u 0

Clearly v; can be anything, while vo = v3 = v4 = 0. Thus the kernel is just multiples
of ¥ =(1,0,0,0) and is one dimensional. The geometric dimension of this eigenvalue
is 1.

[BRETSCHER, SEC. 7.4 #21-22] Let A = ([1) ‘2‘) and B := ([1) Z) For which

choices of the constants a and b are these diagonalizable?



SOLUTION: The matrix A has distinct eigenvalues 1 and 2 so it can be diagonalized
for any choice of a.

Similarly for B, if b # 1, it can be diagonalized for any choice of a. However, if b =1,
then A =1 has algebraic multiplicity 2 but if a # 0 it has geometric multiplicity 1. Tt
can be diagonalized if and only if a = 0.

REMARK I found the problems Bretscher, Sec. 7.3 #43-44 and many other applications at
the end of Section 7.3 interesting. You might too. These are not assigned.

Bonus Problem
[Please give this directly to Professor Kazdan]

1-B Let S be the space of smooth real-valued functions u(z) that periodic with period 27,
so u(z + 2m) = u(x) for all z € R with the inner product (f, g) := ["_f(z)g(x)dx.
Let D : S :— [ be the derivative operator, Du = du/dz and let L := —D?.

a) Find the adjoints of both D and L. Note that by definition, the adjoint A* of a
linear map A is the map that satisfies the identity (v, Aw) = (A*v, w) for all v
and w. [HINT: Integrate by parts].

b) Find the eigenfunctions uy(x) and corresponding eigenvalues, Ay of L, so u(z) is
27 periodic and Luy, = A\puy .

c) Use the result of the previous part to conclude that if k # ¢ are integers, then
sin kz is orthogonal to sinfz and cos{x.
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