Problem Set 9

Due: In class Tuesday, Nov. 27 Late papers will be accepted until 12:00 on Thursday (at the beginning of class).

1. Suppose that λ is an eigenvalue of an $n \times n$ matrix A and let E_{λ} be the set of all eigenvectors with the same eigenvalue λ. Show that E_{λ} is a linear subspace of \mathbb{R}^{n}.
Solution: Say that both \vec{v} and \vec{w} are in E_{λ}. We need to show that both $c \vec{v}$ and $\vec{v}+\vec{w}$ are in E_{λ} cor any scalar c.
Now $A(c \vec{v})=c A \vec{v}=c \lambda \vec{v}=\lambda\left(c \vec{v}\right.$ so $c \vec{v} \in E_{\lambda}$.
Also, $A(\vec{v}+\vec{w})=A \vec{v}+A \vec{w}=\lambda \vec{v}+\lambda \vec{w}=\lambda(\vec{v}+\vec{w})$. Thus $\vec{v}+\vec{w} \in E_{\lambda}$.
2. Let A be a 2×2 real matrix whose eigenvalues are not real.
a) Suppose one of the eigenvalues has absolute value 1. Explain why the other must as well.
Solution: Let $\lambda=\alpha+i \beta$ be a complex eigenvalue with $\beta \neq 0$. Since A is real, then its complex conjugate, $\bar{\lambda}=\alpha-i \beta$ is also an eigenvalue. But $|\bar{\lambda}|=|\lambda|=1$.
b) Explain why A must be diagonalizable.

Solution: Since the eigenvalues of A are distinct, it is diagonalizable.
3. This asks you to come up with four examples. In each case, find a matrix (perhaps 2×2) that is:
a) Both invertible and diagonalizable.

Solution: The identity matrix, I; the matrix $\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right)$.
b) Not invertible, but diagonalizable.

Solution: The zero matrix, 0 ; the matrix $\left(\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right)$.
c) Not diagonalizable but is invertible.

Solution: $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$.
d) Neither invertible nor diagonalizable.

Solution: $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
4. If the matrices A and B are similar and if $A^{3}=0$, must $B^{3}=0$? Proof or counterexample.
Solution: True. Since $B=S^{-1} A S$ for some S, then $B^{3}=S^{-1} A^{3} S=0$.
5. In a large city, a car rental company has three locations: the Airport, the City, and the Suburbs.
One has data on which location the cars are returned daily:

- Rented at Airport: 2% are returned to the City and 25% to the Suburbs. The rest are returned to the Airport.
- Rented in City : 10% returned to Airport, 10% returned to Suburbs.
- Rented in Suburbs: 25% are returned to the Airport and 2% to the city.

If initially there are 35 cars at the Airport, 150 in the city, and 35 in the suburbs, what is the long-term distribution of the cars?

Solution: Lat A_{k}, C_{k}, and S_{k} be the number of cars on day k at the Airport, City, and Suburbs, respectively. Then

$$
\begin{aligned}
A_{k+1} & =.73 A_{k}+.10 C_{k}+.25 S_{k} \\
C_{k+1} & =.02 A_{k}+.80 C_{k}+.02 S_{k} \\
S_{k+1} & =.25 A_{k}+.10 C_{k}+.73 S_{k}
\end{aligned}
$$

Thus the transition matrix T is: $T=\left(\begin{array}{ccc}.73 & .10 & .25 \\ .02 & .80 & .02 \\ .25 & .10 & .73\end{array}\right)$.
To find the he eigenvector P with eigenvalue 1 one needs to solve:

$$
\begin{aligned}
-27 A+10 C+25 S & =0 \\
2 A-20 C+2 S & =0 \\
25 A+10 C-27 S & =0
\end{aligned}
$$

This gives $A=S=5 C$.
In addition, since P is supposed to be a probability vector, $A+C+S=1$. Thus $C=1 / 11$ so $A=S=5 / 11$.
Using the initial state, there are $35+150+35=220$ cars in all. Thus in the long run:
city: $220 / 11=20$ cars
airport: 100 cars
suburbs: 100 card.
6. Let R be a (real) 3×3 orthogonal matrix.
a) Show that the eigenvalues, λ, which may be complex, all have absolute value 1 .

Solution: Since R is an orthogonal matrix, then $\|R \vec{v}\|=\|\vec{v}\|$ for every vector \vec{v}. In particular, if $R \vec{v}=\lambda \vec{v}$, then $\|\vec{v}\|=\|\lambda \vec{v}\|=|\lambda|\|\vec{v}\|$ so $|\lambda|=1$.
b) If $\operatorname{det} R=1$ show that $\lambda=1$ is one of the eigenvalues of R and that if $R \neq I$, no other eigenvalue can be 1 .
Solution: Since R is a real matrix, either two of its eigenvalues are complex or none are.
CASE 1 Two complex eigenvalues, say λ_{1} and λ_{2}, so $\lambda_{2}=\overline{\lambda_{1}}$ and then $\lambda_{1} \lambda_{2}=1$. Since $1=\operatorname{det} R=\lambda_{1} \lambda_{2} \lambda_{3}$, then $\lambda_{3}=1$.
Case 2 All three eigenvalues are real. Since the real eigenvalues can only have values ± 1, the only possibilities are

$$
1,1,1, \quad 1,1,-1, \quad 1,-1,-1, \quad-1,-1,-1 .
$$

Because $\operatorname{det} R=1$ and $R \neq I$, the only possibility is $1,-1,-1$.
For the remainder of this problem assume $\operatorname{det} R=1$ and $R \neq I$.
c) Let N be an eigenvector corresponding to $\lambda=1$ and . let Q be the plane of all vectors orthogonal to N. Show that R maps Q to Q.
Solution: An orthogonal matrix preserves the inner product: $\langle R \vec{x}, \mathbb{R} \vec{y}\rangle=\langle\vec{x}, \vec{y}\rangle$ for all vectors \vec{x}, \vec{y}. Thus, since $R \vec{N}=\vec{N}$, if $\vec{x} \in Q$, so $\langle\vec{x}, \vec{N}\rangle=0$, then

$$
\langle R \vec{x}, \vec{N}\rangle=\langle R \vec{x}, R \vec{N}\rangle=\langle\vec{x}, \vec{N}\rangle=0
$$

that is, $R \vec{x} \in Q$.
d) Why does this show that R is a rotation of the plane Q with N as the axis of rotation?

Solution: $\quad Q$ is a two dimensional plane and R is an orthogonal transformation from Q to itself. Thus R acts on Q as either a rotation or a reflection. Since $\operatorname{det} R=1$, it is a rotation.
7. [Bretscher, Sec. $7.1 \# 36]$ Find a 2×2 matrix A such that $\binom{3}{1}$ and $\binom{1}{2}$ are eigenvectors with corresponding eigenvalues 5 and 10 .

Solution: There are several approaches. Here is one. Since A can be diagonalized (it has a basis of eigenvectors) the matrix $S=\left(\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right)$ whose columns are the eigenvectors of A has the property that $S^{-1} A S=D$, where D is the diagonal matrix whose elements are 5 and 10 . Thus

$$
A=S D S^{-1}=\left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{rr}
5 & 0 \\
0 & 10
\end{array}\right) \frac{1}{5}\left(\begin{array}{rr}
2 & -1 \\
-1 & 3
\end{array}\right)=\left(\begin{array}{rr}
4 & 3 \\
-2 & 11
\end{array}\right) .
$$

8. [BRETSCHER, SEc. 7.1 \#38] We are told that $\left(\begin{array}{r}1 \\ -1 \\ -1\end{array}\right)$ is an eigenvector of the matrix $M:=\left(\begin{array}{ccc}4 & 1 & 1 \\ -5 & 0 & -3 \\ -1 & -1 & 2\end{array}\right)$. What is the associated eigenvalue?

Solution:

$$
\left(\begin{array}{ccc}
4 & 1 & 1 \\
-5 & 0 & -3 \\
-1 & -1 & 2
\end{array}\right)\left(\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right)=\left(\begin{array}{r}
2 \\
-2 \\
-2
\end{array}\right)=2\left(\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right)
$$

so the eigenvalue is 2 .
9. [Bretscher, Sec. 7.2 \#12] Find all of the eigenvalues of $M:=\left(\begin{array}{cccc}2 & -2 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 3 & -4 \\ 0 & 0 & 2 & -3\end{array}\right)$ and determine their algebraic multiplicity.
Solution:

$$
\begin{aligned}
\operatorname{det}(M-\lambda I) & =\operatorname{det}\left(\begin{array}{cc}
2-\lambda & -2 \\
1 & -1-\lambda
\end{array}\right) \operatorname{det}\left(\begin{array}{cc}
3-\lambda & -4 \\
2 & -3-\lambda
\end{array}\right) \\
& =\left(\lambda^{2}-\lambda\right)\left(\lambda^{2}-1\right) .
\end{aligned}
$$

The eigenvalues are thus $0,1,1,-1$. The eigenvalue 1 has algebraic multiplicity 2 , the others have algebraic multiplicity 1.

For this example the geometric multiplicities agree with the algebraic multiplicities so the matrix can be diagonalized.
10. [Bretscher, Sec. 7.2 \#14] Consider a 4×4 matrix $A:=\left(\begin{array}{cc}B & C \\ 0 & D\end{array}\right)$, where B, C, and D are 2×2 matrices. What is the relationship between the eigenvalues of A, B, C, and D ?
Solution: First a preliminary result. In the above notation, if $M:=\left(\begin{array}{cc}R & S \\ 0 & T\end{array}\right)$, then $\operatorname{det} M=(\operatorname{det} R)(\operatorname{det} T)$.
Case 1: If R is not invertible then its columns - and hence the corresponding columns of M - are linearly dependent so both $\operatorname{det} R=0$ and $\operatorname{det} M=0$.
Case 2: R is invertible. This is an exercise in block multiplication of matrices. Let X be an unknown 2×2 matrix. Then

$$
\left(\begin{array}{cc}
R & S \\
0 & T
\end{array}\right)\left(\begin{array}{cc}
I & X \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
R & R X+S \\
0 & T
\end{array}\right)
$$

Since R is invertible we can pick X so that $R X+S=0$. The result should now be clear.

Applying this to $M:=A=\lambda I$ we conclude that the eigenvalues of A, including their algebraic multiplicities, are exactly those determined by B and D. Note, however, that even if both B and D are diagonalizable, A may not be. The simplest example is $B=D=0$ and $C=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
11. The characteristic polynomial $p_{A}(\lambda)$ of A is

$$
\begin{equation*}
p_{A}(\lambda):=\operatorname{det}(A-\lambda I)=(-\lambda)^{n}+c_{n-1}(-\lambda)^{n-1}+\cdots+c_{0}, \tag{1}
\end{equation*}
$$

Caution: many books define the characteristic polynomial as $\operatorname{det}(\lambda I-A)$, which changes some signs.) In class we showed that similar matrices have the same characteristic polynomial.
Recall that the trace of a matrix $A=\left(a_{i j}\right)$ is the sum of the diagonal elements: $\operatorname{trace}(A)=a_{11}+a_{22}+\cdots+a_{n n}$. In this problem you will see that the trace and determinant of A are two of the coefficients in the characteristic polynomial.
a) Show that $c_{0}=\operatorname{det}(A)$.

Solution: Let $\lambda=0$ in equation (11).
b) Since also the eigenvalues of A are the roots of the characteristic polynomial, show that the trace of A is the sum of its eigenvalues:

$$
\operatorname{trace}(A)=\lambda_{1}+\cdots+\lambda_{n}
$$

These are the coefficient c_{n-1} of $(-\lambda)^{n-1}$. [Although this is true for all n., only do this for $n=3$. The procedure in the general case is identical.]
Solution: In the case of $n=3$, the characteristic polynomial is a cubic. We compute the coefficient of λ^{2} for both sides of equation (1). First we expand $\operatorname{det}(\lambda I-A)$ by minors using the first column:

$$
\begin{aligned}
p_{A}(\lambda) & =\operatorname{det}\left(\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
a_{21} & a_{22}-\lambda & a_{23} \\
a_{31} & a_{32} & a_{33}-\lambda
\end{array}\right) \\
& =\left(a_{11}-\lambda\right) \operatorname{det}\left(\begin{array}{cc}
a_{22}-\lambda & a_{23} \\
a_{32} & a_{33}-\lambda
\end{array}\right)-a_{21} \operatorname{det}\left(\begin{array}{cc}
a_{12} & a_{13} \\
a_{32} & a_{33}-\lambda
\end{array}\right)+a_{31} \operatorname{det}\left(\begin{array}{cc}
a_{12} & a_{13} \\
a_{32} & a_{33}-\lambda
\end{array}\right) .
\end{aligned}
$$

Note that the second and third terms on the last line do not contribute any quadratic terms in λ so we can ignore them. We indicate such terms by writing $+\cdots$. Continuing from above

$$
\begin{align*}
p_{A}(\lambda) & =\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)\left(a_{33}-\lambda\right)+\cdots \\
& =-\lambda^{3}+\left(a_{11}+a_{22}+a_{33}\right) \lambda^{2}+\cdots \tag{2}
\end{align*}
$$

Next we factor $p_{A}(\lambda)$ using its roots, the eigenvalues λ_{j}. The computation is similar to that above.

$$
\begin{equation*}
p_{A}(\lambda)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right)\left(\lambda_{3}-\lambda\right)=-\lambda^{3}+\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) \lambda^{2}+\cdots . \tag{3}
\end{equation*}
$$

Comparing the coefficient of λ^{2} in equations (2) and (3) we conclude that the trace of a matrix is the sum of its eigenvalues.
12. Let A be the transition matrix of a Markov Chain. If $\vec{v}:=(1,1 \ldots, 1)^{T}$ show that $A^{*} \vec{v}=\vec{v}$.
Why does this imply that $\lambda=1$ is an eigenvalue of A ? Thus if A is the transition matrix of any Markov Chain, $\lambda=1$ is always an eigenvalue.

Solution: Since the sum of the elements in each column of A is 1 , the sum of the elements in each row of A^{*} is 1 . This is exactly the same as $A^{*} \vec{v}=\vec{v}$.
Because for any matrix A the eigenvalues of A and A^{*} are the same, we conclude that 1 is an eigenvalue of A.
13. Say a sequence $x=\left\{x_{0}, x_{1}, x_{2}, x_{3}, \ldots\right\}$ has the properties $x_{0}=0, x_{1}=1$, and, recursively, $x_{k+2}=x_{k+1}+x_{k}$ for $k=0,1,2,3 \ldots$ For instance, $x_{2}=1, x_{3}=2$, etc. Let $u_{k}=x_{k}, v_{k}=x_{k+1}$ and write $W_{k}:=\binom{u_{k}}{v_{k}}$. Note $W_{0}=\binom{0}{1}$.
a) Show that

$$
W_{k+1}=\binom{v_{k}}{v_{k}+u_{v}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) W_{k}
$$

Solution: Since $v_{k+1}=x_{k+2}=x_{k}+x_{k+1}=u_{k}+v_{k}$, then

$$
W_{k+1}=\binom{u_{k+1}}{v_{k+1}}=\binom{v_{k}}{u_{k}+v_{k}}=\left(\begin{array}{cc}
0 & 1 \\
1 & 1
\end{array}\right) W_{k}=A W_{k},
$$

where A is the evident 2×2 matrix.
b) Let A denote the 2×2 matrix above. Show that $W_{k}=A^{k} W_{0}$.

Solution: $W_{2}=A W_{1}=A^{2} W_{0}, W_{3}=A W_{2}=A^{3} W_{0}$, etc.
c) Diagonalize A and use this to compute A^{k} and thus W_{k} explicitly.

Solution: The characteristic polynomial of A gives $\lambda^{2}-\lambda-1=0$, so $\lambda_{ \pm}=$ $\frac{1}{2}\left(1 \pm \sqrt{5}\right.$. The corresponding eigenvectors are $\vec{v}_{+}=\binom{1}{\lambda_{+}}$and $\vec{v}_{-}=\binom{1}{\lambda_{-}}$. Then $S^{-1} A S=D$, where $D=\left(\begin{array}{cc}\lambda_{+} & 0 \\ 0 & \lambda_{-}\end{array}\right)$, and the change of coordinates matrix
is $S=\left(\begin{array}{ll}1 & 1 \\ \lambda_{+} & \lambda_{-}\end{array}\right)$whose columns are the corresponding eigenvectors of A. Thus $A=S D S^{-1}$. Therefore, using $\lambda_{+} \lambda_{-}=-1$,

$$
\begin{aligned}
A^{k}=S D^{k} S^{-1} & =\left(\begin{array}{cc}
1 & 1 \\
\lambda_{+} & \lambda_{-}
\end{array}\right)\left(\begin{array}{cc}
\lambda_{+}^{k} & 0 \\
0 & \lambda_{-}^{k}
\end{array}\right) \frac{-1}{\sqrt{5}}\left(\begin{array}{cc}
\lambda_{-} & -1 \\
-\lambda_{+} & 1
\end{array}\right) \\
& =\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
\lambda_{+}^{k-1}-\lambda_{-}^{k-1} & \lambda_{+}^{k}-\lambda_{-}^{k} \\
\lambda_{+}^{k}-\lambda_{-}^{k} & \lambda_{+}^{k+1}-\lambda_{-}^{k+1}
\end{array}\right) .
\end{aligned}
$$

Therefore

$$
W_{k}=A^{k} W_{0}=\frac{1}{\sqrt{5}}\binom{\lambda_{+}^{k}-\lambda_{\bar{k}}^{k}}{\lambda_{+}^{k+1}-\lambda_{-}^{k+1}} .
$$

d) Use this to get an explicit formula for x_{k}.

Solution: Since $x_{k}=u_{k}$, then x_{k} is the first component of W_{k},

$$
x_{k}=\frac{1}{\sqrt{5}}\left(\lambda_{+}^{k}-\lambda_{-}^{k}\right)=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\right]
$$

It is interesting that although by the recursive formula $x_{k+2}=x_{k}+x_{k+1}$ the x_{k} are clearly integers, the explicit formula we just found involves $\sqrt{5}$.
14. [Bretscher, SEc. $7.3 \# 28]$ Let $B:=\left(\begin{array}{cccc}k & 1 & 0 & 0 \\ 0 & k & 1 & 0 \\ 0 & 0 & k & 1 \\ 0 & 0 & 0 & k\end{array}\right)$ where k is an arbitrary constant. Find the eigenvalue(s) of B and determine both their algebraic and geometric multiplicities. [NOTE: First try the analogous 2×2 case.]
Solution: Since B is upper triangular its eigenvalues are $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=k$ (so the algebraic multiplicity is 4).
To determine the geometric multiplicity we want the dimension of the kernel of $B-k I$, that is, the solutions of

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

Clearly v_{1} can be anything, while $v_{2}=v_{3}=v_{4}=0$. Thus the kernel is just multiples of $\vec{v}=(1,0,0,0)$ and is one dimensional. The geometric dimension of this eigenvalue is 1 .
15. [Bretscher, SEc. $7.4 \# 21-22]$ Let $A=\left(\begin{array}{ll}1 & a \\ 0 & 2\end{array}\right)$ and $B:=\left(\begin{array}{ll}1 & a \\ 0 & b\end{array}\right)$. For which choices of the constants a and b are these diagonalizable?

Solution: The matrix A has distinct eigenvalues 1 and 2 so it can be diagonalized for any choice of a.
Similarly for B, if $b \neq 1$, it can be diagonalized for any choice of a. However, if $b=1$, then $\lambda=1$ has algebraic multiplicity 2 but if $a \neq 0$ it has geometric multiplicity 1 . It can be diagonalized if and only if $a=0$.

Remark I found the problems Bretscher, Sec. 7.3 \#43-44 and many other applications at the end of Section 7.3 interesting. You might too. These are not assigned.

Bonus Problem

[Please give this directly to Professor Kazdan]
1-B Let \mathcal{S} be the space of smooth real-valued functions $u(x)$ that periodic with period 2π, so $u(x+2 \pi)=u(x)$ for all $x \in \mathbb{R}$ with the inner product $\langle f, g\rangle:=\int_{-\pi}^{\pi} f(x) g(x) d x$. Let $D: \mathcal{S}: \rightarrow \int$ be the derivative operator, $D u=d u / d x$ and let $L:=-D^{2}$.
a) Find the adjoints of both D and L. Note that by definition, the adjoint A^{*} of a linear map A is the map that satisfies the identity $\langle v, A w\rangle=\left\langle A^{*} v, w\right\rangle$ for all v and w. [Hint: Integrate by parts].
b) Find the eigenfunctions $u_{k}(x)$ and corresponding eigenvalues, λ_{k} of L, so $u(x)$ is 2π periodic and $L u_{k}=\lambda_{k} u_{k}$.
c) Use the result of the previous part to conclude that if $k \neq \ell$ are integers, then $\sin k x$ is orthogonal to $\sin \ell x$ and $\cos \ell x$.
[Last revised: December 10, 2012]

