Given a real periodic function $f(x),-\pi<x<\pi$, one can find its Fourier series in two (equivalent) ways: using trigonometric functions:

$$
f(x)=\frac{a_{0}}{\sqrt{2 \pi}}+\sum_{k=1}^{\infty}\left[a_{k} \frac{\cos k x}{\sqrt{\pi}}+b_{k} \frac{\sin k x}{\sqrt{\pi}}\right]
$$

or using the complex exponential

$$
f(x)=\sum_{k=-\infty}^{\infty} c_{k} \frac{e^{i k x}}{\sqrt{2 \pi}}
$$

Note that if $f(x)$ is a real-valued function, we can take the real part of the complex exponential version to get the trigonometric version (caution: the coefficiants c_{k} will probably be complex numbers).
Here we will use complex exponentials. The Fourier coefficients are

$$
c_{k}=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} x e^{-i k x} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} x[\cos k x-i \sin k x] d x=\frac{-2 i}{\sqrt{2 \pi}} \int_{0}^{\pi} x \sin k x d x
$$

But

$$
\int_{0}^{\pi} x \sin k x d x=\left.\frac{-x \cos k x}{k}\right|_{0} ^{\pi}+\frac{1}{k} \int_{0}^{\pi} \cos k x d x=\frac{-\pi \cos k \pi}{k}=-\frac{\pi}{k}(-1)^{k} .
$$

Thus

$$
c_{k}=-\frac{2 i}{\sqrt{2 \pi}}\left[-\frac{\pi}{k}(-1)^{k}\right]=i \sqrt{2 \pi}\left[\frac{(-1)^{k}}{k}\right]
$$

Consequently

$$
\begin{aligned}
x & =i \sqrt{2 \pi} \sum_{k \neq 0} \frac{(-1)^{k}}{k} \frac{e^{i k x}}{\sqrt{2 \pi}}=i \sum_{k \neq 0} \frac{(-1)^{k}}{k} e^{i k x} \\
& =-2 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k} \sin k x=2\left[\sin x-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\frac{\sin 4 x}{4}+\cdots\right]
\end{aligned}
$$

Finally we compute what the Phthagorean Theorem tells us: $\|x\|^{2}=\Sigma\left|c_{k}\right|^{2}$. Since

$$
\|x\|^{2}=\int_{-\pi}^{\pi}|x|^{2} d x=\frac{2}{3} \pi^{3}
$$

and

$$
\sum\left|c_{k}\right|^{2}=2 \pi\left[\sum_{-\infty}^{-1} \frac{1}{k^{2}}+\sum_{1}^{\infty} \frac{1}{k^{2}}\right]=4 \pi \sum_{1}^{\infty} \frac{1}{k^{2}}
$$

Therefore

$$
\frac{2}{3} \pi^{3}=4 \pi \sum_{1}^{\infty} \frac{1}{k^{2}}, \quad \text { that is, } \quad \sum_{1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Interesting! - and not obvious at all.

