ODE-Matrix

Particular solution of $u^{\prime \prime}-3 u=x^{2}$ using matrices. Let \mathcal{P}_{2} be the linear space of polynomials of degree at most 2 .

$$
p(x)=a+b x+c x^{2}
$$

Note that $L: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$. We want to represent L as a 3×3 matrix using the standard basis for \mathcal{P}_{2}, which we indicate by \mathcal{B}

$$
p_{0}(x)=1=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)_{\mathcal{B}}, \quad p_{1}(x)=x=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)_{\mathcal{B}}, \quad p_{2}(x)=x^{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)_{\mathcal{B}} .
$$

Then

$$
\begin{gathered}
L p_{0}=L 1=-3=-3 p_{0}=\left(\begin{array}{r}
-3 \\
0 \\
0
\end{array}\right)_{\mathcal{B}}, \\
L p_{1}=L x=-3 x=-3 p_{1}=\left(\begin{array}{r}
0 \\
-3 \\
0
\end{array}\right)_{\mathcal{B}}, \\
L p_{2}=2-3 x_{2}=2 p_{0}-3 p_{2}=\left(\begin{array}{r}
2 \\
0 \\
-3
\end{array}\right)_{\mathcal{B}} .
\end{gathered}
$$

In this basis, the matrix representing L has $L p_{0}$ as its first column, $L p_{1}$ as its second column, and $L p_{2}$ as its third column.

$$
L_{\mathcal{B}}=\left(\begin{array}{rrr}
-3 & 0 & 2 \\
0 & -3 & 0 \\
0 & 0 & -3
\end{array}\right)_{\mathcal{B}} .
$$

To solve $u^{\prime \prime}-3 u=x^{2}$ we solve the matrix equation

$$
\left(\begin{array}{rrr}
-3 & 0 & 2 \tag{1}\\
0 & -3 & 0 \\
0 & 0 & -3
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Of course this is exactly the same as seeking a solution of $u^{\prime \prime}-3 u=x^{2}$ by seeking u as $u(x)=a+b x+c x^{2}$ since $L u=2 c-3\left(a+b x+c x^{2}\right)$ so we want to pick the unknown coefficients a, b, c so that

$$
2 c-3\left(a+b x+c x^{2}\right)=x^{2}, \quad \text { that is, } \quad-3 c x^{2}-3 b x+(2 c-3 a)=x^{2}
$$

so

$$
-3 c=1, \quad-3 b=0, \quad 2 c-3 a=0,
$$

which is the same as (1)
[Last revised: February 11, 2014]

