ODE-Matrix

Particular solution of $u''-3u=x^2$ using matrices. Let \mathcal{P}_2 be the linear space of polynomials of degree at most 2.

$$p(x) = a + bx + cx^2$$

Note that $L: \mathcal{P}_2 \to \mathcal{P}_2$. We want to represent L as a 3×3 matrix using the standard basis for \mathcal{P}_2 , which we indicate by \mathcal{B}

$$p_0(x) = 1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_{\mathcal{B}}, \quad p_1(x) = x = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}_{\mathcal{B}}, \quad p_2(x) = x^2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{\mathcal{B}}.$$

Then

$$Lp_0 = L1 = -3 = -3p_0 = \begin{pmatrix} -3\\0\\0 \end{pmatrix}_{\mathcal{B}},$$

$$Lp_1 = Lx = -3x = -3p_1 = \begin{pmatrix} 0\\-3\\0 \end{pmatrix}_{\mathcal{B}},$$

$$Lp_2 = 2 - 3x_2 = 2p_0 - 3p_2 = \begin{pmatrix} 2\\0\\-3 \end{pmatrix}_{\mathcal{B}}.$$

In this basis, the matrix representing L has Lp_0 as its first column, Lp_1 as its second column, and Lp_2 as its third column.

$$L_{\mathcal{B}} = \begin{pmatrix} -3 & 0 & 2\\ 0 & -3 & 0\\ 0 & 0 & -3 \end{pmatrix}_{\mathcal{B}}.$$

To solve $u'' - 3u = x^2$ we solve the matrix equation

$$\begin{pmatrix} -3 & 0 & 2\\ 0 & -3 & 0\\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} a\\ b\\ c \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \tag{1}$$

Of course this is exactly the same as seeking a solution of $u'' - 3u = x^2$ by seeking u as $u(x) = a + bx + cx^2$ since $Lu = 2c - 3(a + bx + cx^2)$ so we want to pick the unknown coefficients a, b, c so that

$$2c - 3(a + bx + cx^{2}) = x^{2}$$
, that is, $-3cx^{2} - 3bx + (2c - 3a) = x^{2}$

so

$$-3c = 1$$
, $-3b = 0$, $2c - 3a = 0$,

which is the same as (1)

[Last revised: February 11, 2014]