Directions This exam has two parts. Part A has 5 shorter questions, (10 points each so total 50 points) while Part B had 5 problems (18 points each, so total is 90 points). Maximum score is thus 140 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides. Clarity and neatness count.

Part A: Five short answer questions (10 points each, so 50 points).
A-1. Which of the following sets are linear spaces? [If not, why not?]
a) The set of points $(x, y) \in \mathbb{R}^{2}$ with $y=2 x+x^{2}$.

Solution No. $(1,3)$ is in this set but $(2,6)$ not.
b) The set of once differentiable solutions $u(x)$ of $u^{\prime}+3 x^{2} u=0$. [You are not being asked to solve this equation.]
Solution Yes.
c) The set of all polynomials $p(x)$ with the property that $\int_{0}^{1} p(x) e^{x} d x=0$.

Solution Yes.
d) The set of 3×2 matrices $\left(\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right)$ with $a+2 e=0$.

Solution Yes.

A-2. Let S and T be linear spaces and $L: S \rightarrow T$ be a linear map. Say \vec{v}_{1} and \vec{v}_{2} are (distinct!) solutions of the equations $L \vec{x}=\vec{y}_{1}$ while \vec{w} is a solution of $L \vec{x}=\vec{y}_{2}$. Answer the following in terms of \vec{v}_{1}, \vec{v}_{2}, and \vec{w}.
a) Find some solution of $L \vec{x}=2 \vec{y}_{1}-2 \vec{y}_{2}$.

Solution $\vec{x}=2 \vec{v}_{1}-2 \vec{w}$
b) Find another solution (other than \vec{w}) of $L \vec{x}=\vec{y}_{2}$.

SOLUTION $\vec{x}=\vec{v}_{1}-\vec{v}_{2}+\vec{w}$

A-3. Let A be any 5×3 matrix so $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ is a linear transformation. Answer the following include a brief explanation.
a) Is $A \vec{x}=\vec{b}$ necessarily solvable for any \vec{b} in \mathbb{R}^{5} ?

Solution No. For instance, if A is the zero matrix the only point in the image is $b=0$. In addition, for this case since the dimension of the image is at most 3 , there is no such matrix that is onto.
b) Suppose the kernel of A is one dimensional. What is the dimension of the image of A ? Solution $\operatorname{dim}(\operatorname{ker} A)=1$ so $\operatorname{dim}(\operatorname{im} A)=2$.

A-4. Find a 2×2 matrix A that in the standard basis does the indicated transformation of the letter \mathbf{F} (here the smaller \mathbf{F} is transformed to the larger one):

Solution $\quad A=\left(\begin{array}{rr}0 & -2 \\ 1 & 0\end{array}\right)$

A-5. In \mathbb{R}^{n} (or any linear space with an inner product), If X and Y are orthogonal, show that the Pythagorean Theorem holds:

$$
\|X+Y\|^{2}=\|X\|^{2}+\|Y\|^{2} .
$$

Solution $\langle X+Y, X+Y,=\rangle\langle X, X\rangle+\langle Y, Y\rangle+\langle X, Y\rangle+\langle Y, X\rangle=\|X\|^{2}+\|Y\|^{2}$

Part B Five questions, 18 points each (so 90 points total).
B-1. In \mathbb{R}^{3}, find the distance between the point $P=(1,3,-1)$ and the plane of points $\left(x, x_{2}, x_{3}\right)$ whose coordinates satisfy $2 x_{1}+x_{2}-2 x_{3}=0$.

Solution The unit normal vector to this plane is $\vec{N}=\frac{(2,1,-2)}{\|(2,1,-2)\|}=(2 / 3,1 / 3,-2 / 3)$ and the distance that we want is $|\langle P, \vec{N}\rangle|=|2 / 3+1+2 / 3|=7 / 3$

B-2. Let A and B be $n \times n$ real matrices. If the matrix $C:=B A$ is invertible, prove that both A and B are invertible.

Solution Since $B A$ invertible we have $\operatorname{ker}(B A)=0$. Also $\operatorname{ker}(A) \subset k e r(B A)$ so $\operatorname{ker}(A)=0$. Because A is a square matrix it is invertible.
Let $C=B A$. Then $B=C A^{-1}$ so B is the product of two invertible matrices and hence is invertible. [Alternate: Since $\operatorname{im}(B A) \subset \operatorname{im}(B)$ and $B A$ is onto, then B is onto. Because B is square it is invertible.]

B-3. Let the linear map $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be specified by the matrix $A:=\left(\begin{array}{rrr}3 & 0 & 1 \\ 1 & -2 & 1 \\ 2 & -1 & 1\end{array}\right)$.
a) Find a basis for the kernel of A.

Solution After solving $A \vec{x}=\overrightarrow{0}$ we obtain $x_{3}=-3 x_{1}, x_{2}=-x_{1}$ hence $\operatorname{ker}(A)=$ $\{(t,-t,-3 t) \mid t \in \mathbb{R}\}=\operatorname{span}\{(1,-1,-3)\}$.
b) Find a basis for the image of A.

Solution From (a) and the rank-nullity theorem we have that $\operatorname{dim}(\operatorname{im} A)=2$. Also we know that the image of A is the space of columns of A. Examining the columns of A we see that the first and second column of A are linearly independent hence they form a basis for $\operatorname{im}(A)$ i.e. $\{(3,1,2),(0,-2,-1)\}$ is a basis for $\operatorname{im}(A)$. There are many other obvious bases, such as the first and third columns of A.
c) With the above matrix A, is it possible to find an invertible 3×3 matrix B so that the matrix $A B$ is invertible? (Why?)
Solution No. Since $\operatorname{im}(A B) \subset \operatorname{im} A$ and the image of A has dimension 2, then $A B$ cannot be onto and hence cannot be invertible.
[Alternate: Suppose yes. Then there exists an invertible 3×3 matrix B such that $A B$ invertible. Since A, B are 3×3 matrices and $A B$ is invertible, then problem B-2 implies that A is invertible. So we have a contradiction namely there does not exist such matrix B.

B-4. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation that sends

$$
\vec{e}_{1} \text { to } \quad \vec{e}_{1}+\vec{e}_{3}, \quad \vec{e}_{2} \quad \text { to }-\vec{e}_{1}, \quad \text { and } \quad \vec{e}_{3} \text { to } \vec{e}_{2}+\vec{e}_{3}
$$

(here the e_{j} are the standard basis vectors).
a) Find the matrix representation of T (using the standard basis).

Solution From the information give we have that the matrix has as first column $\vec{e}_{1}+\vec{e}_{3}$, as second column $-\vec{e}_{2}$ and as third column $\overrightarrow{e_{2}}+\vec{e}_{3}$. Hence:

$$
T=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

b) Describe what the inverse transformation T^{-1} does to each of the vectors $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$. (This will involve some computations).
Solution Since $T\left(\vec{e}_{1}\right)=\vec{e}_{1}+\vec{e}_{3}, T\left(\vec{e}_{2}\right)=-\vec{e}_{1}$, and $T\left(\vec{e}_{3}\right)=\vec{e}_{2}+\vec{e}_{3}$, we have that:

$$
T^{-1}\left(\vec{e}_{1}+\vec{e}_{3}\right)=\vec{e}_{1}, \quad T^{-1}\left(-\vec{e}_{1}\right)=\vec{e}_{2}, \quad \text { and } \quad T^{-1}\left(\vec{e}_{2}+\vec{e}_{3}\right)=\vec{e}_{3}
$$

hence,

$$
\begin{gathered}
T^{-1}\left(\vec{e}_{1}\right)=-\vec{e}_{2} \\
T^{-1}\left(\vec{e}_{3}\right)=T^{-1}\left(\left(\vec{e}_{1}+\vec{e}_{3}\right)-\vec{e}_{1}\right)=T^{-1}\left(\vec{e}_{1}+\vec{e}_{3}\right)-T^{-1}\left(\vec{e}_{1}\right)=\vec{e}_{1}+\vec{e}_{2} \\
T^{-1}\left(\vec{e}_{2}\right)=T^{-1}\left(\left(\vec{e}_{2}+\vec{e}_{3}\right)-\vec{e}_{3}\right)=T^{-1}\left(\vec{e}_{2}+\vec{e}_{3}\right)-T^{-1}\left(\vec{e}_{3}\right)=\vec{e}_{3}-\vec{e}_{1}-\vec{e}_{2}
\end{gathered}
$$

Alternate: Use any method to compute the inverse of the matrix you found in part a).
c) Find all solutions \vec{x} of the equation $T(\vec{x})=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.

Solution Since $\vec{x}=T^{-1}\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=T^{-1}\left(\vec{e}_{1}\right)+2 T^{-1}\left(\vec{e}_{2}\right)+3 T^{-1}\left(\vec{e}_{3}\right)$, we have that:

$$
\vec{x}=-\vec{e}_{2}+2 \vec{e}_{3}-2 \vec{e}_{1}-2 \vec{e}_{2}+3 \vec{e}_{1}+3 \vec{e}_{2}=\vec{e}_{1}+2 \vec{e}_{3}
$$

B-5. Let \mathcal{P}_{N} be the linear space of polynomials of degree at most N and $L: \mathcal{P}_{N} \rightarrow \mathcal{P}_{N}$ the linear map defined by $L u:=u^{\prime \prime}+b u^{\prime}+c u$, where b, and c are constants. Assume $c \neq 0$.
a) Compute $L\left(x^{k}\right)$.

SOLUTION $L\left(x^{k}\right)=c x^{k}+b k x^{k-1}+k(k-1) x^{k-2}$.
b) In the special case $N=2$, show that the kernel of $L: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ is 0 . [This uses $c \neq 0$.]

Solution Say $p(x):=a_{2} x^{2}+a_{1} x+a_{0} \in \operatorname{ker}(L)$. Then

$$
0=L p=2 a_{2}+b\left(2 a_{2} x+a_{1}\right)+c\left(a_{2} x^{2}+a_{1} x+a_{0}\right)=0 .
$$

That is,

$$
c a_{2} x^{2}+\left(2 b a_{2}+c a_{1}\right) x+\left(2 a_{2}+b a_{1}+c a_{0}\right)=0 .
$$

The coefficients of each power of x must be zero. In particular, $c a_{2}=0$. Since $c \neq 0$, then $a_{2}=0$. Looking at the coefficient of x this then implies that $a_{1}=0$. Finally, $2 a_{2}+b a_{1}+c a_{0}=0$ then implies $a_{0}=0$.
c) Show that for every polynomial $q(x) \in \mathcal{P}_{2}$ there is one (and only one) solution $p(x) \in \mathcal{P}_{2}$ of the differential equation $L p=q$.
Solution Since L has trivial kernel then by the rank-nullity theorem $L: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ is also onto and hence invertible. Thus for all $q \in \mathcal{P}_{2}$ there exists a unique $p \in \mathcal{P}_{2}$ such that $L p=q$.
d) In the general case where $N \geq 0$ can be any integer, show that the kernel of $L: \mathcal{P}_{N} \rightarrow \mathcal{P}_{N}$ is 0 .
Solution Say $p(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}$ is in the kernel of L. Assume that $p(x)$ is not the zero polynomial and actually has degree k so $a_{k} \neq 0$. Computing $L p$ we obtain a polynomial of degree k. By part a)

$$
0=L p=\left(c a_{k}\right) x^{k}+\text { lower order terms } .
$$

Thus $c a_{k}=0$. Because $c \neq 0$ then $a_{k}=0$. This contradicts $a_{k} \neq 0$. Thus the only possibility for $L p=0$ is that p is the zero polynomial.
e) Show that for every polynomial $q(x) \in \mathcal{P}_{N}$ there is one (and only one) solution $p(x) \in \mathcal{P}_{N}$ of $L p=q$. In other words, if $c \neq 0$, the map $L \mathcal{P}_{N} \rightarrow \mathcal{P}_{N}$ is invertible.
Solution Uniqueness: If $p_{1}, p_{2} \in \mathcal{P}_{N}$ solutions then $L\left(p_{1}-p_{2}\right)=L p_{1}-L p_{2}=q-q=0$ so $p_{1}-p_{2} \in \operatorname{ker}(L)$ hence $p_{1}=p_{2}$.

Existence: Since N is fixed, $\operatorname{dim} \mathcal{P}_{N}$ is finite. Because $\operatorname{ker} L=0$, by the rank-nullity theorem L is onto and hence invertible.

