Directions This exam has two parts. Part A has 5 shorter questions, (10 points each so total 50 points) while Part B had 5 problems (18 points each, so total is 90 points). Maximum score is thus 140 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides. Clarity and neatness count.
Part A: Five short answer questions (10 points each, so 50 points).
A-1. Which of the following sets are linear spaces? [If not, why not?]
a) The set of points $(x, y) \in \mathbb{R}^{2}$ with $y=2 x+x^{2}$.
b) The set of once differentiable solutions $u(x)$ of $u^{\prime}+3 x^{2} u=0$. [You are not being asked to solve this equation.]
c) The set of all polynomials $p(x)$ with the property that $\int_{0}^{1} p(x) e^{x} d x=0$.
d) The set of 3×2 matrices $\left(\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right)$ with $a+2 e=0$.

A-2. Let S and T be linear spaces and $L: S \rightarrow T$ be a linear map. Say \vec{v}_{1} and \vec{v}_{2} are (distinct!) solutions of the equations $L \vec{x}=\vec{y}_{1}$ while \vec{w} is a solution of $L \vec{x}=\vec{y}_{2}$. Answer the following in terms of \vec{v}_{1}, \vec{v}_{2}, and \vec{w}.
a) Find some solution of $L \vec{x}=2 \vec{y}_{1}-2 \vec{y}_{2}$.
b) Find another solution (other than \vec{w}) of $L \vec{x}=\overrightarrow{y_{2}}$.

A-3. Let A be any 5×3 matrix so $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ is a linear transformation. Answer the following include a brief explanation.
a) Is $A \vec{x}=\vec{b}$ necessarily solvable for any \vec{b} in \mathbb{R}^{5} ?
b) Suppose the kernel of A is one dimensional. What is the dimension of the image of A ?

A-4. Find a 2×2 matrix A that in the standard basis does the indicated transformation of the letter \mathbf{F} (here the smaller \mathbf{F} is transformed to the larger one):

A-5. In \mathbb{R}^{n} (or any linear space with an inner product), If X and Y are orthogonal, show that the Pythagorean Theorem holds:

$$
\|X+Y\|^{2}=\|X\|^{2}+\|Y\|^{2} .
$$

Part B Five questions, 18 points each (so 90 points total).
B-1. In \mathbb{R}^{3}, find the distance between the point $P=(1,3,-1)$ and the plane of points $\left(x, x_{2}, x_{3}\right)$ whose coordinates satisfy $2 x_{1}+x_{2}-2 x_{3}=0$.
$\mathrm{B}-2$. Let A and B be $n \times n$ real matrices. If the matrix $C:=B A$ is invertible, prove that both A and B are invertible.

B-3. Let the linear map $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be specified by the matrix $A:=\left(\begin{array}{rrr}3 & 0 & 1 \\ 1 & -2 & 1 \\ 2 & -1 & 1\end{array}\right)$.
a) Find a basis for the kernel of A.
b) Find a basis for the image of A.
c) With the above matrix A, is it possible to find an invertible 3×3 matrix B so that the matrix $A B$ is invertible? (Why?)

B-4. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation that sends

$$
\vec{e}_{1} \text { to } \quad \vec{e}_{1}+\vec{e}_{3}, \quad \vec{e}_{2} \text { to }-\vec{e}_{1}, \quad \text { and } \quad \vec{e}_{3} \text { to } \vec{e}_{2}+\vec{e}_{3}
$$

(here the e_{j} are the standard basis vectors).
a) Find the matrix representation of T (using the standard basis).
b) Describe what the inverse transformation T^{-1} does to each of the vectors $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$. (This will involve some computations).
c) Find all solutions \vec{x} of the equation $T(\vec{x})=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.

B-5. Let \mathcal{P}_{N} be the linear space of polynomials of degree at most N and $L: \mathcal{P}_{N} \rightarrow \mathcal{P}_{N}$ the linear map defined by $L u:=u^{\prime \prime}+b u^{\prime}+c u$, where b, and c are constants. Assume $c \neq 0$.
a) Compute $L\left(x^{k}\right)$.
b) In the special case $N=2$, show that the kernel of $L: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ is 0 . [This uses $c \neq 0$.]
c) Show that for every polynomial $q(x) \in \mathcal{P}_{2}$ there is one (and only one) solution $p(x) \in \mathcal{P}_{2}$ of the differential equation $L p=q$.
d) In the general case where $N \geq 0$ can be any integer, show that the kernel of $L: \mathcal{P}_{N} \rightarrow \mathcal{P}_{N}$ is 0 .
e) Show that for every polynomial $q(x) \in \mathcal{P}_{N}$ there is one (and only one) solution $p(x) \in \mathcal{P}_{N}$ of $L p=q$. In other words, if $c \neq 0$, the map $L \mathcal{P}_{N} \rightarrow \mathcal{P}_{N}$ is invertible.

