Directions This exam has two parts. Part A has 4 shorter questions, (5 points each so total 20 points) while Part B had 6 problems (12 points each, so total is 72 points). Maximum score is thus 92 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides. Clarity and neatness count.

Part A: Four short answer questions (5 points each, so 20 points).
A-1. Let A be a 3×3 real matrix two of whose eigenvalues are $\lambda_{1}=-2$ and $\lambda_{2}=1-2 i$, with corresponding eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}, what are λ_{3} and \mathbf{v}_{3} ?

A-2. Given a unit vector $\mathbf{w} \in \mathbb{R}^{n}$, let $W=\operatorname{span}\{\mathbf{w}\}$ and consider the linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by

$$
T(\mathbf{x})=2 \operatorname{Proj}_{W}(\mathbf{x})-\mathbf{x},
$$

where $\operatorname{Proj}_{W}(\mathbf{x})$ is the orthogonal projection onto W. Show that T is one-to-one.

A-3. Let A be an invertible matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and corresponding eigenvectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$. What can you say about the eigenvalues and eigenvectors of A^{-1} ? Justify your response.

A-4. Let A be an $n \times n$ real self-adjoint matrix and \mathbf{v} an eigenvector with eigenvalue λ. Let $W=\operatorname{span}\{\mathbf{v}\}$.
a) If $\mathbf{w} \in W$, show that $A \mathbf{w} \in W$
b) If $\mathbf{z} \in W^{\perp}$, show that $A \mathbf{z} \in W^{\perp}$.

Part B Six questions, 12 points each (so 72 points total).
B-1. Let A be a real symmetric matrix. Say that \vec{v}_{1} and \vec{v}_{2} are eigenvectors corresponding to distinct eigenvalues $\lambda_{1} \neq \lambda_{2}$. Show that \vec{v}_{1} and \vec{v}_{2} are orthogonal.

B-2. In a large city, a car rental company has three locations: the Airport, the City, and the Suburbs. One has data on which location the cars are returned daily:

- Rented at Airport: 5% are returned to the City and 20% to the Suburbs. The rest are returned to the Airport.
- Rented in City : 10% are returned to Airport, 10% returned to Suburbs.
- Rented in Suburbs: 20% are returned to the Airport and 5% to the City.

If initially there are 20 cars at the Airport, 65 in the city, and 15 in the suburbs, what is the long-term distribution of the cars?

B-3. Let $A=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2\end{array}\right)$.
a) What is the dimension of the image of A ? Why?
b) What is the dimension of the kernel of A ? Why?
c) What are the eigenvalues of A ? Why?
d) What are the eigenvalues of $B:=\left(\begin{array}{lll}4 & 1 & 2 \\ 1 & 4 & 2 \\ 1 & 1 & 5\end{array}\right)$? Why? [Hint: $\left.B=A+3 I\right]$.

B-4. For certain polynomials $\mathbf{p}(t), \mathbf{q}(t)$, and $\mathbf{r}(t)$, say we are given the following table of inner products:

$\langle\rangle$,	\mathbf{p}	\mathbf{q}	\mathbf{r}
\mathbf{p}	4	0	8
\mathbf{q}	0	1	0
\mathbf{r}	8	0	50

For example, $\langle\mathbf{q}, \mathbf{r}\rangle=\langle\mathbf{r}, \mathbf{q}\rangle=0$. Let E be the span of \mathbf{p} and \mathbf{q}.
a) Compute $\langle\mathbf{p}, \mathbf{q}+\mathbf{r}\rangle$.
b) Compute $\|\mathbf{q}+\mathbf{r}\|$.
c) Find the orthogonal projection $\operatorname{Proj}_{E} \mathbf{r}$. [Express your solution as linear combinations of \mathbf{p} and \mathbf{q}.]
d) Find an orthonormal basis of the span of \mathbf{p}, \mathbf{q}, and \mathbf{r}. [Express your results as linear combinations of \mathbf{p}, \mathbf{q}, and \mathbf{r}.]

B-5. An $n \times n$ matrix is called nilpotent if A^{k} equals the zero matrix for some positive integer k. (For instance, ($\left.\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is nilpotent.)
a) If λ is an eigenvalue of a nilpotent matrix A, show that $\lambda=0$. (Hint: start with the equation $A \vec{x}=\lambda \vec{x}$.)
b) Show that if A is both nilpotent and diagonalizable, then A is the zero matrix. [Hint: use Part a).]
c) Let A be the matrix that represents $T: \mathcal{P}_{5} \rightarrow \mathcal{P}_{5}$ (polynomials of degree at most 5) given by differentiation: $T p=d p / d x$. Without doing any computations, explain why A must be nilpotent.

B-6. Let $A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be a linear map. Show that

$$
\operatorname{dim}(\operatorname{ker} A)-\operatorname{dim}\left(\operatorname{ker} A^{*}\right)=k-n .
$$

In particular, for a square matrix, $\operatorname{dim}(\operatorname{ker} A)=\operatorname{dim}\left(\operatorname{ker} A^{*}\right)$.

