Math 312 April 1, 2014

DIRECTIONS This exam has two parts. Part A has 4 shorter questions, (5 points each so total 20 points) while Part B had 6 problems (12 points each, so total is 72 points). Maximum score is thus 92 points.

Closed book, no calculators or computers– but you may use one $3'' \times 5''$ card with notes on both sides. *Clarity and neatness count.*

PART A: Four short answer questions (5 points each, so 20 points).

- A-1. Let A be a 3×3 real matrix two of whose eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = 1 2i$, with corresponding eigenvectors \mathbf{v}_1 and \mathbf{v}_2 , what are λ_3 and \mathbf{v}_3 ?
- A-2. Given a *unit* vector $\mathbf{w} \in \mathbb{R}^n$, let $W = \text{span} \{\mathbf{w}\}$ and consider the linear map $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$T(\mathbf{x}) = 2 \operatorname{Proj}_W(\mathbf{x}) - \mathbf{x}_{\mathcal{B}}$$

where $\operatorname{Proj}_W(\mathbf{x})$ is the orthogonal projection onto W. Show that T is one-to-one.

- A-3. Let A be an invertible matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$ and corresponding eigenvectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$. What can you say about the eigenvalues and eigenvectors of A^{-1} ? Justify your response.
- A-4. Let A be an $n \times n$ real self-adjoint matrix and **v** an eigenvector with eigenvalue λ . Let $W = \text{span} \{ \mathbf{v} \}.$
 - a) If $\mathbf{w} \in W$, show that $A\mathbf{w} \in W$
 - b) If $\mathbf{z} \in W^{\perp}$, show that $A\mathbf{z} \in W^{\perp}$.

PART B Six questions, 12 points each (so 72 points total).

- B-1. Let A be a real symmetric matrix. Say that \vec{v}_1 and \vec{v}_2 are eigenvectors corresponding to distinct eigenvalues $\lambda_1 \neq \lambda_2$. Show that \vec{v}_1 and \vec{v}_2 are orthogonal.
- B-2. In a large city, a car rental company has three locations: the Airport, the City, and the Suburbs. One has data on which location the cars are returned daily:
 - RENTED AT AIRPORT: 5% are returned to the City and 20% to the Suburbs. The rest are returned to the Airport.
 - RENTED IN CITY : 10% are returned to Airport, 10% returned to Suburbs.
 - RENTED IN SUBURBS: 20% are returned to the Airport and 5% to the City.

If initially there are 20 cars at the Airport, 65 in the city, and 15 in the suburbs, what is the long-term distribution of the cars?

B-3. Let
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix}$$

- a) What is the dimension of the image of A? Why?
- b) What is the dimension of the kernel of A? Why?
- c) What are the eigenvalues of A? Why?
- d) What are the eigenvalues of $B := \begin{pmatrix} 4 & 1 & 2 \\ 1 & 4 & 2 \\ 1 & 1 & 5 \end{pmatrix}$? Why? [HINT: B = A + 3I].
- B-4. For certain polynomials $\mathbf{p}(t)$, $\mathbf{q}(t)$, and $\mathbf{r}(t)$, say we are given the following table of inner products:

$\langle \ , \ \rangle$	р	\mathbf{q}	r
p	4	0	8
q	0	1	0
r	8	0	50

For example, $\langle \mathbf{q}, \mathbf{r} \rangle = \langle \mathbf{r}, \mathbf{q} \rangle = 0$. Let *E* be the span of **p** and **q**.

- a) Compute $\langle \mathbf{p}, \mathbf{q} + \mathbf{r} \rangle$.
- b) Compute $\|\mathbf{q} + \mathbf{r}\|$.
- c) Find the orthogonal projection $\operatorname{Proj}_{E}\mathbf{r}$. [Express your solution as linear combinations of \mathbf{p} and \mathbf{q} .]
- d) Find an orthonormal basis of the span of **p**, **q**, and **r**. [Express your results as linear combinations of **p**, **q**, and **r**.]
- B-5. An $n \times n$ matrix is called *nilpotent* if A^k equals the zero matrix for some positive integer k. (For instance, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is nilpotent.)
 - a) If λ is an eigenvalue of a nilpotent matrix A, show that $\lambda = 0$. (Hint: start with the equation $A\vec{x} = \lambda \vec{x}$.)
 - b) Show that if A is both nilpotent and diagonalizable, then A is the zero matrix. [Hint: use Part a).]
 - c) Let A be the matrix that represents $T: \mathcal{P}_5 \to \mathcal{P}_5$ (polynomials of degree at most 5) given by differentiation: Tp = dp/dx. Without doing any computations, explain why A must be nilpotent.

B–6. Let $A: \mathbb{R}^k \to \mathbb{R}^n$ be a linear map. Show that

 $\dim(\ker A) - \dim(\ker A^*) = k - n.$

In particular, for a square matrix, $\dim(\ker A) = \dim(\ker A^*).$