
Math 312 Exam 2 Jerry L. Kazdan
April 1, 2014 9:00 – 10:20

Directions This exam has two parts. Part A has 4 shorter questions, (5 points each so total 20
points) while Part B had 6 problems (12 points each, so total is 72 points). Maximum score is thus
92 points.
Closed book, no calculators or computers– but you may use one 3′′ × 5′′ card with notes on both
sides. Clarity and neatness count.

Part A: Four short answer questions (5 points each, so 20 points).

A–1. Let A be a 3 × 3 real matrix two of whose eigenvalues are λ1 = −2 and λ2 = 1 − 2i , with
corresponding eigenvectors v1 and v2 , what are λ3 and v3?

Solution We know that complex eigenvalues come in pairs i.e. λ3 = λ2 = 1 + 2i and
Av2 = Av2 = λ2v2 hence v3 = v2 .

A–2. Given a unit vector w ∈ Rn , let W = span {w} and consider the linear map T : Rn → Rn
defined by

T (x) = 2 ProjW (x)− x,

where ProjW (x) is the orthogonal projection onto W . Show that T is one-to-one.

Method 1 We need to show that the kernel of T is trivial, so we need to solve:

2 ProjW (x)− x = 0 (1)

To the above equation we apply T again and obtain:

0 = T (2 ProjW (x)− x) = 2 ProjW (2 ProjW (x)− x)− 2 ProjW (x) + x

so:
0 = 4 ProjW (x)− 2 ProjW (x)− 2 ProjW (x) + x = x

Hence, the kernel of T is trivial, namely T is one-to-one.

Method 2 Since w is a unit vector, ProjW (x) = 〈x, w〉w so equation (1) is

2〈x, w〉w = x.

Taking the inner product of this with w gives 2〈x, w〉 = 〈x, w〉 so 〈x, w〉 = 0. Equation (1)
then gives x = 0.

Method 3 Let P : Rn → Rn be any projection, not necessarily orthogonal. It has the property
P 2 = P . Define

Tx := cPx− x

for any constant c . Claim: if c 6= 1, then kerT = 0 (so T is one-to-one). To see this, apply P
to both sides of cPx = x and use P 2 = P to find cPx = Px . Because c 6= 1, then Px = 0.
Consequently x = 0.
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A–3. Let A be an invertible matrix with eigenvalues λ1 , λ2 , . . . ,λk and corresponding eigenvectors
~v1 , ~v2 , . . . ,~vk . What can you say about the eigenvalues and eigenvectors of A−1? Justify your
response.

Solution Since A invertible we have that A~vi = λi~vi and λi 6= 0 for all i . Hence by
multiplying 1

λi
A−1 on both sides of A~vi = λi~vi we obtain that A−1~vi = 1

λi
~vi . So 1

λ1
, . . . , 1

λk

are the eigenvalues of A−1 with the same corresponding eigenvectors ~v1 , ~v2 , . . . ,~vk .

A–4. Let A be an n × n real self-adjoint matrix and v an eigenvector with eigenvalue λ . Let
W = span {v} .
a) If w ∈W , show that Aw ∈W

Solution If w ∈W then w = kv . Hence Aw = Akv = kλv ∈W .

b) If z ∈W⊥ , show that Az ∈W⊥ .

Solution If z ∈W⊥ then 〈z, v〉 = 0. Hence 〈Az, v〉 = 〈z, A∗v〉 = 〈z, Av〉 = 〈z, λv〉 =
λ〈z, v〉 = 0 so Az ∈W⊥ .

Part B Six questions, 12 points each (so 72 points total).

B–1. Let A be a real symmetric matrix. Say that ~v1 and ~v2 are eigenvectors corresponding to
distinct eigenvalues λ1 6= λ2 . Show that ~v1 and ~v2 are orthogonal.

Solution We have that:

λ1〈~v1, ~v2〉 = 〈A~v1, ~v2〉 = 〈~v1, A∗~v2〉 = 〈~v1, A~v2〉 = λ2〈~v1, ~v2〉

(λ1 − λ2)〈~v1, ~v2〉 = 0

so 〈~v1, ~v2〉 = 0, namely ~v1, ~v2 are orthogonal.

Method 2 Since λ1 6= λ2 , at least one of them is not zero. Say λ2 6= 0. Now use

〈A~v1, A~v2〉 = λ1λ2〈~v1, ~v2〉

and
〈A~v1, A~v2〉 = 〈~v1, A2~v2〉 = λ22〈~v1, ~v2〉.

Now use λ2 6= 0 and λ1 6= λ2 to conclude 〈~v1, ~v2〉 = 0.

B–2. In a large city, a car rental company has three locations: the Airport, the City, and the
Suburbs. One has data on which location the cars are returned daily:

• Rented at Airport: 5% are returned to the City and 20% to the Suburbs. The rest
are returned to the Airport.

• Rented in City : 10% are returned to Airport, 10% returned to Suburbs.

• Rented in Suburbs: 20% are returned to the Airport and 5% to the City.
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If initially there are 20 cars at the Airport, 65 in the city, and 15 in the suburbs, what is the
long-term distribution of the cars?

Solution The equations we obtain from the information given is:

xk+1 = 0.75xk + 0.1yk + 0.2zk

yk+1 = 0.05xk + 0.8yk + 0.05zk

zk+1 = 0.2xk + 0.1yk + 0.75zk

where x ’s, y ’s,z ’s correspond to information about cars rented at airport, city, suburbs re-
spectively. Hence the transition matrix is:

T =

0.75 0.1 0.2
0.05 0.8 0.05
0.2 0.1 0.75


which is regular, so we need to find the probability eigenvector corresponding to the eigenvalue
λ = 1. Solving T~v = ~v we obtain v1 = v3 and v2 = 0.5v3 where ~v = (v1, v2, v3). Hence a
eigenvector corresponding to λ = 1 is:

~v =

2
1
2


so the unique probability eigenvector corresponding to λ = 1 is:

1/5~v =

0.4
0.2
0.4

 .

Now, initially there were 100 cars so the long term distribution is: 40 cars at the Airport, 20
at the City and 40 at the Suburbs.

B–3. Let A =

1 1 2
1 1 2
1 1 2

 .

a) What is the dimension of the image of A? Why?

Solution Since imA is the column-space of A we have that imA = span {(1, 1, 1)} , so
dim(imA) = 1.

b) What is the dimension of the kernel of A? Why?

Solution From rank-nullity theorem and part (a) we have that dim(kerA) = 2.

c) What are the eigenvalues of A? Why?

Solution 1: Since kerA is 2-dimensional it implies that two of the eigenvalues of A are
0. Also since the trace of A (which is equal to 4) is equal to the sum of its eigenvalues we
have that the third eigenvalue is equal to 4.

Solution 2: Using the characteristic polynomial of A which is: pA(λ) = λ2(4− λ).
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d) What are the eigenvalues of B :=

4 1 2
1 4 2
1 1 5

? Why? [Hint: B = A+ 3I ].

Solution If λ is an eigenvalue of A and v the corresponding eigenvector then:

Bv = (A+ 3I)v = (λ+ 3)v

hence using part (c) we obtain that the eigenvalues of B are 3, 3, 7.

B–4. For certain polynomials p(t), q(t), and r(t), say we are given the following table of inner
products:

〈 , 〉 p q r

p 4 0 8

q 0 1 0

r 8 0 50

For example, 〈q, r〉 = 〈r, q〉 = 0. Let E be the span of p and q .

a) Compute 〈p, q + r〉 .
Solution 〈p, q + r〉 = 〈p, q〉+ 〈p, r〉 = 0 + 8 = 8

b) Compute ‖q + r‖ .
Solution ‖q + r‖ =

√
〈q, q〉+ 〈r, r〉+ 2〈q, r〉 =

√
1 + 50 + 0 =

√
51

c) Find the orthogonal projection ProjEr . [Express your solution as linear combinations of
p and q .]

Solution ProjEr = 〈r,p〉
〈p,p〉p + 〈r,q〉

〈q,q〉q = 2p .

d) Find an orthonormal basis of the span of p , q , and r . [Express your results as linear
combinations of p , q , and r .]

Solution We apply the Gram-Schmidt process to first get an orthogonal basis {u1, Bu2, Bu3}
and then the orthonormal basis {e1, e2, e3} :

u1 = q and e1 = q

u2 = p− 〈p, q〉
〈q, q〉

q = p and e2 = 1/2p

u3 = r− 〈r, q〉
〈q, q〉

q− 〈r, p〉
〈p, p〉

p = r− 2p and

e3 =
r− 2p√

34
since ‖r− 2p‖2 = 〈r, r〉+ 4〈p, p〉 − 4〈r, p〉 = 50 + 16− 32 = 34.

B–5. An n× n matrix is called nilpotent if Ak equals the zero matrix for some positive integer k .
(For instance, ( 0 1

0 0 ) is nilpotent.)
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a) If λ is an eigenvalue of a nilpotent matrix A , show that λ = 0. (Hint: start with the
equation A~x = λ~x .)

Solution We have A~x = λ~x so Ak~x = λk~x . Hence λk~x = 0 so λ = 0 since ~x 6= 0
(because it is an eigenvector).

b) Show that if A is both nilpotent and diagonalizable, then A is the zero matrix. [Hint: use
Part a).]

Solution From part (a) we deduce that all eigenvalues of A are zero, Hence A is similar
to the zero matrix hence A = S(0)S−1 = 0 where 0 the zero matrix and S some matrix.

c) Let A be the matrix that represents T : P5 → P5 (polynomials of degree at most 5) given
by differentiation: Tp = dp/dx . Without doing any computations, explain why A must
be nilpotent.

Solution Since p polynomial of degree at most 5 we have that T 6 is the zero map
(T 6 = T ◦ T ◦ T ◦ T ◦ T ◦ T composition of T with itself) hence A6 = 0 namely A
nilpotent.

B–6. Let A : Rk → Rn be a linear map. Show that

dim(kerA)− dim(kerA∗) = k − n.

In particular, for a square matrix, dim(kerA) = dim(kerA∗).

Solution 1: Since in Rk , (imA∗)⊥ = kerA , we have that

dim(kerA) + dim(imA∗) = k

Also, since A∗ : Rn → Rk , by the rank-nullity theorem

dim(kerA∗) + dim(imA∗) = n

Then we subtract to obtain:

dim(kerA)− dim(A∗) = k − n.

Solution 2: Since A∗ : Rn → Rk , by a homework problem dim imA = dim imA∗ . Using
rank-nullity theorem we have:

dim(kerA)− dim(kerA∗) = (dimRk − dim imA)− (dimRn − dim imA∗) = k − n
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