Directions This exam has two parts. Part A has 4 shorter questions, (5 points each so total 20 points) while Part B had 6 problems (12 points each, so total is 72 points). Maximum score is thus 92 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides. Clarity and neatness count.

Part A: Four short answer questions (5 points each, so 20 points).
A-1. Let A be a 3×3 real matrix two of whose eigenvalues are $\lambda_{1}=-2$ and $\lambda_{2}=1-2 i$, with corresponding eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}, what are λ_{3} and \mathbf{v}_{3} ?

Solution We know that complex eigenvalues come in pairs i.e. $\lambda_{3}=\overline{\lambda_{2}}=1+2 i$ and $A \overline{\mathbf{v}_{2}}=\overline{A \mathbf{v}_{2}}=\overline{\lambda_{2}} \overline{\mathbf{v}_{2}}$ hence $\mathbf{v}_{3}=\overline{\mathbf{v}_{2}}$.

A-2. Given a unit vector $\mathbf{w} \in \mathbb{R}^{n}$, let $W=\operatorname{span}\{\mathbf{w}\}$ and consider the linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by

$$
T(\mathbf{x})=2 \operatorname{Proj}_{W}(\mathbf{x})-\mathbf{x},
$$

where $\operatorname{Proj}_{W}(\mathbf{x})$ is the orthogonal projection onto W. Show that T is one-to-one.
Method 1 We need to show that the kernel of T is trivial, so we need to solve:

$$
\begin{equation*}
2 \operatorname{Proj}_{W}(\mathbf{x})-\mathbf{x}=0 \tag{1}
\end{equation*}
$$

To the above equation we apply T again and obtain:

$$
0=T\left(2 \operatorname{Proj}_{W}(\mathbf{x})-\mathbf{x}\right)=2 \operatorname{Proj}_{W}\left(2 \operatorname{Proj}_{W}(\mathbf{x})-\mathbf{x}\right)-2 \operatorname{Proj}_{W}(\mathbf{x})+\mathbf{x}
$$

so:

$$
0=4 \operatorname{Proj}_{W}(\mathbf{x})-2 \operatorname{Proj}_{W}(\mathbf{x})-2 \operatorname{Proj}_{W}(\mathbf{x})+\mathbf{x}=\mathbf{x}
$$

Hence, the kernel of T is trivial, namely T is one-to-one.
Method 2 Since \mathbf{w} is a unit vector, $\operatorname{Proj}_{W}(\mathbf{x})=\langle\mathbf{x}, \mathbf{w}\rangle \mathbf{w}$ so equation (1) is

$$
2\langle\mathbf{x}, \mathbf{w}\rangle \mathbf{w}=\mathbf{x}
$$

Taking the inner product of this with \mathbf{w} gives $2\langle\mathbf{x}, \mathbf{w}\rangle=\langle\mathbf{x}, \mathbf{w}\rangle$ so $\langle\mathbf{x}, \mathbf{w}\rangle=0$. Equation (1) then gives $\mathbf{x}=0$.
Method 3 Let $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be any projection, not necessarily orthogonal. It has the property $P^{2}=P$. Define

$$
T \mathrm{x}:=c P \mathbf{x}-\mathbf{x}
$$

for any constant c. Claim: if $c \neq 1$, then $\operatorname{ker} T=0$ (so T is one-to-one). To see this, apply P to both sides of $c P \mathbf{x}=\mathbf{x}$ and use $P^{2}=P$ to find $c P \mathbf{x}=P \mathbf{x}$. Because $c \neq 1$, then $P \mathbf{x}=0$. Consequently $\mathbf{x}=0$.

A-3. Let A be an invertible matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and corresponding eigenvectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$. What can you say about the eigenvalues and eigenvectors of A^{-1} ? Justify your response.

Solution Since A invertible we have that $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$ and $\lambda_{i} \neq 0$ for all i. Hence by multiplying $\frac{1}{\lambda_{i}} A^{-1}$ on both sides of $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$ we obtain that $A^{-1} \vec{v}_{i}=\frac{1}{\lambda_{i}} \vec{v}_{i}$. So $\frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{k}}$ are the eigenvalues of A^{-1} with the same corresponding eigenvectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$.

A-4. Let A be an $n \times n$ real self-adjoint matrix and \mathbf{v} an eigenvector with eigenvalue λ. Let $W=\operatorname{span}\{\mathbf{v}\}$.
a) If $\mathbf{w} \in W$, show that $A \mathbf{w} \in W$

Solution If $\mathbf{w} \in W$ then $\mathbf{w}=k \mathbf{v}$. Hence $A \mathbf{w}=A k \mathbf{v}=k \lambda \mathbf{v} \in W$.
b) If $\mathbf{z} \in W^{\perp}$, show that $A \mathbf{z} \in W^{\perp}$.

Solution If $\mathbf{z} \in W^{\perp}$ then $\langle\mathbf{z}, \mathbf{v}\rangle=0$. Hence $\langle A \mathbf{z}, \mathbf{v}\rangle=\left\langle\mathbf{z}, A^{*} \mathbf{v}\right\rangle=\langle\mathbf{z}, A \mathbf{v}\rangle=\langle\mathbf{z}, \lambda \mathbf{v}\rangle=$ $\lambda\langle\mathbf{z}, \mathbf{v}\rangle=0$ so $A \mathbf{z} \in W^{\perp}$.

Part B Six questions, 12 points each (so 72 points total).
B-1. Let A be a real symmetric matrix. Say that \vec{v}_{1} and \vec{v}_{2} are eigenvectors corresponding to distinct eigenvalues $\lambda_{1} \neq \lambda_{2}$. Show that \vec{v}_{1} and \vec{v}_{2} are orthogonal.

Solution We have that:

$$
\begin{gathered}
\lambda_{1}\left\langle\vec{v}_{1}, \vec{v}_{2}\right\rangle=\left\langle A \vec{v}_{1}, \vec{v}_{2}\right\rangle=\left\langle\vec{v}_{1}, A^{*} \vec{v}_{2}\right\rangle=\left\langle\vec{v}_{1}, A \vec{v}_{2}\right\rangle=\lambda_{2}\left\langle\vec{v}_{1}, \vec{v}_{2}\right\rangle \\
\left(\lambda_{1}-\lambda_{2}\right)\left\langle\vec{v}_{1}, \vec{v}_{2}\right\rangle=0
\end{gathered}
$$

so $\left\langle\vec{v}_{1}, \vec{v}_{2}\right\rangle=0$, namely \vec{v}_{1}, \vec{v}_{2} are orthogonal.
Method 2 Since $\lambda_{1} \neq \lambda_{2}$, at least one of them is not zero. Say $\lambda_{2} \neq 0$. Now use

$$
\left\langle A \vec{v}_{1}, A \vec{v}_{2}\right\rangle=\lambda_{1} \lambda_{2}\left\langle\vec{v}_{1}, \vec{v}_{2}\right\rangle
$$

and

$$
\left\langle A \vec{v}_{1}, A \vec{v}_{2}\right\rangle=\left\langle\vec{v}_{1}, A^{2} \vec{v}_{2}\right\rangle=\lambda_{2}^{2}\left\langle\vec{v}_{1}, \vec{v}_{2}\right\rangle .
$$

Now use $\lambda_{2} \neq 0$ and $\lambda_{1} \neq \lambda_{2}$ to conclude $\left\langle\vec{v}_{1}, \vec{v}_{2}\right\rangle=0$.

B-2. In a large city, a car rental company has three locations: the Airport, the City, and the Suburbs. One has data on which location the cars are returned daily:

- Rented at Airport: 5% are returned to the City and 20% to the Suburbs. The rest are returned to the Airport.
- Rented in City : 10% are returned to Airport, 10% returned to Suburbs.
- Rented in Suburbs: 20% are returned to the Airport and 5% to the City.

If initially there are 20 cars at the Airport, 65 in the city, and 15 in the suburbs, what is the long-term distribution of the cars?

Solution The equations we obtain from the information given is:

$$
\begin{gathered}
x_{k+1}=0.75 x_{k}+0.1 y_{k}+0.2 z_{k} \\
y_{k+1}=0.05 x_{k}+0.8 y_{k}+0.05 z_{k} \\
z_{k+1}=0.2 x_{k}+0.1 y_{k}+0.75 z_{k}
\end{gathered}
$$

where x 's, y 's, z 's correspond to information about cars rented at airport, city, suburbs respectively. Hence the transition matrix is:

$$
T=\left(\begin{array}{ccc}
0.75 & 0.1 & 0.2 \\
0.05 & 0.8 & 0.05 \\
0.2 & 0.1 & 0.75
\end{array}\right)
$$

which is regular, so we need to find the probability eigenvector corresponding to the eigenvalue $\lambda=1$. Solving $T \vec{v}=\vec{v}$ we obtain $v_{1}=v_{3}$ and $v_{2}=0.5 v_{3}$ where $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$. Hence a eigenvector corresponding to $\lambda=1$ is:

$$
\vec{v}=\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right)
$$

so the unique probability eigenvector corresponding to $\lambda=1$ is:

$$
1 / 5 \vec{v}=\left(\begin{array}{l}
0.4 \\
0.2 \\
0.4
\end{array}\right) \text {. }
$$

Now, initially there were 100 cars so the long term distribution is: 40 cars at the Airport, 20 at the City and 40 at the Suburbs.

B-3. Let $A=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2\end{array}\right)$.
a) What is the dimension of the image of A ? Why?

Solution Since $\operatorname{im} A$ is the column-space of A we have that $\operatorname{im} A=\operatorname{span}\{(1,1,1)\}$, so $\operatorname{dim}(\operatorname{im} A)=1$.
b) What is the dimension of the kernel of A ? Why?

Solution From rank-nullity theorem and part (a) we have that $\operatorname{dim}(\operatorname{ker} A)=2$.
c) What are the eigenvalues of A ? Why?

Solution 1: Since ker A is 2-dimensional it implies that two of the eigenvalues of A are 0 . Also since the trace of A (which is equal to 4) is equal to the sum of its eigenvalues we have that the third eigenvalue is equal to 4 .
Solution 2: Using the characteristic polynomial of A which is: $p_{A}(\lambda)=\lambda^{2}(4-\lambda)$.
d) What are the eigenvalues of $B:=\left(\begin{array}{lll}4 & 1 & 2 \\ 1 & 4 & 2 \\ 1 & 1 & 5\end{array}\right)$? Why? [Hint: $B=A+3 I$].

Solution If λ is an eigenvalue of A and \mathbf{v} the corresponding eigenvector then:

$$
B \mathbf{v}=(A+3 I) \mathbf{v}=(\lambda+3) \mathbf{v}
$$

hence using part (c) we obtain that the eigenvalues of B are $3,3,7$.

B-4. For certain polynomials $\mathbf{p}(t), \mathbf{q}(t)$, and $\mathbf{r}(t)$, say we are given the following table of inner products:

$\langle\rangle$,	\mathbf{p}	\mathbf{q}	\mathbf{r}
\mathbf{p}	4	0	8
\mathbf{q}	0	1	0
\mathbf{r}	8	0	50

For example, $\langle\mathbf{q}, \mathbf{r}\rangle=\langle\mathbf{r}, \mathbf{q}\rangle=0$. Let E be the span of \mathbf{p} and \mathbf{q}.
a) Compute $\langle\mathbf{p}, \mathbf{q}+\mathbf{r}\rangle$.

Solution $\langle\mathbf{p}, \mathbf{q}+\mathbf{r}\rangle=\langle\mathbf{p}, \mathbf{q}\rangle+\langle\mathbf{p}, \mathbf{r}\rangle=0+8=8$
b) Compute $\|\mathbf{q}+\mathbf{r}\|$.

SOLUTION $\|\mathbf{q}+\mathbf{r}\|=\sqrt{\langle\mathbf{q}, \mathbf{q}\rangle+\langle\mathbf{r}, \mathbf{r}\rangle+2\langle\mathbf{q}, \mathbf{r}\rangle}=\sqrt{1+50+0}=\sqrt{51}$
c) Find the orthogonal projection $\operatorname{Proj}_{E} \mathbf{r}$. [Express your solution as linear combinations of pand \mathbf{q}.]
Solution $\operatorname{Proj}_{E} \mathbf{r}=\frac{\langle\mathbf{r}, \mathbf{p}\rangle}{\langle\mathbf{p}, \mathbf{p}\rangle} \mathbf{p}+\frac{\langle\mathbf{r}, \mathbf{q}\rangle}{\langle\mathbf{q}, \mathbf{q}\rangle} \mathbf{q}=2 \mathbf{p}$.
d) Find an orthonormal basis of the span of \mathbf{p}, \mathbf{q}, and \mathbf{r}. [Express your results as linear combinations of \mathbf{p}, \mathbf{q}, and \mathbf{r}.]
Solution We apply the Gram-Schmidt process to first get an orthogonal basis $\left\{\mathbf{u}_{1}, B u_{2}, B u_{3}\right\}$ and then the orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$:

$$
\begin{gathered}
\mathbf{u}_{1}=\mathbf{q} \quad \text { and } \quad \mathbf{e}_{1}=q \\
\mathbf{u}_{2}=\mathbf{p}-\frac{\langle\mathbf{p}, \mathbf{q}\rangle}{\langle\mathbf{q}, \mathbf{q}\rangle} \mathbf{q}=\mathbf{p} \quad \text { and } \quad \mathbf{e}_{2}=1 / 2 \mathbf{p} \\
\mathbf{u}_{3}=\mathbf{r}-\frac{\langle\mathbf{r}, \mathbf{q}\rangle}{\langle\mathbf{q}, \mathbf{q}\rangle} \mathbf{q}-\frac{\langle\mathbf{r}, \mathbf{p}\rangle}{\langle\mathbf{p}, \mathbf{p}\rangle} \mathbf{p}=\mathbf{r}-2 \mathbf{p} \text { and } \\
\mathbf{e}_{3}=\frac{\mathbf{r}-2 \mathbf{p}}{\sqrt{34}} \text { since }\|\mathbf{r}-2 \mathbf{p}\|^{2}=\langle\mathbf{r}, \mathbf{r}\rangle+4\langle\mathbf{p}, \mathbf{p}\rangle-4\langle\mathbf{r}, \mathbf{p}\rangle=50+16-32=34 .
\end{gathered}
$$

B-5. An $n \times n$ matrix is called nilpotent if A^{k} equals the zero matrix for some positive integer k. (For instance, ($\left.\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is nilpotent.)
a) If λ is an eigenvalue of a nilpotent matrix A, show that $\lambda=0$. (Hint: start with the equation $A \vec{x}=\lambda \vec{x}$.)
Solution We have $A \vec{x}=\lambda \vec{x}$ so $A^{k} \vec{x}=\lambda^{k} \vec{x}$. Hence $\lambda^{k} \vec{x}=0$ so $\lambda=0$ since $\vec{x} \neq 0$ (because it is an eigenvector).
b) Show that if A is both nilpotent and diagonalizable, then A is the zero matrix. [Hint: use Part a).]
Solution From part (a) we deduce that all eigenvalues of A are zero, Hence A is similar to the zero matrix hence $A=S(\mathbf{0}) S^{-1}=\mathbf{0}$ where $\mathbf{0}$ the zero matrix and S some matrix.
c) Let A be the matrix that represents $T: \mathcal{P}_{5} \rightarrow \mathcal{P}_{5}$ (polynomials of degree at most 5) given by differentiation: $T p=d p / d x$. Without doing any computations, explain why A must be nilpotent.
Solution Since p polynomial of degree at most 5 we have that T^{6} is the zero map ($T^{6}=T \circ T \circ T \circ T \circ T \circ T$ composition of T with itself) hence $A^{6}=\mathbf{0}$ namely A nilpotent.

B-6. Let $A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be a linear map. Show that

$$
\operatorname{dim}(\operatorname{ker} A)-\operatorname{dim}\left(\operatorname{ker} A^{*}\right)=k-n .
$$

In particular, for a square matrix, $\operatorname{dim}(\operatorname{ker} A)=\operatorname{dim}\left(\operatorname{ker} A^{*}\right)$.
Solution 1: Since in $\mathbb{R}^{k},\left(\operatorname{im} A^{*}\right)^{\perp}=\operatorname{ker} A$, we have that

$$
\operatorname{dim}(\operatorname{ker} A)+\operatorname{dim}\left(\operatorname{im} A^{*}\right)=k
$$

Also, since $A^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, by the rank-nullity theorem

$$
\operatorname{dim}\left(\operatorname{ker} A^{*}\right)+\operatorname{dim}\left(\operatorname{im} A^{*}\right)=n
$$

Then we subtract to obtain:

$$
\operatorname{dim}(\operatorname{ker} A)-\operatorname{dim}\left(A^{*}\right)=k-n
$$

Solution 2: Since $A^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, by a homework problem $\operatorname{dimim} A=\operatorname{dim} \operatorname{im} A^{*}$. Using rank-nullity theorem we have:

$$
\operatorname{dim}(\operatorname{ker} A)-\operatorname{dim}\left(\operatorname{ker} A^{*}\right)=\left(\operatorname{dim} \mathbb{R}^{k}-\operatorname{dimim} A\right)-\left(\operatorname{dim} \mathbb{R}^{n}-\operatorname{dim} \operatorname{im} A^{*}\right)=k-n
$$

