Math 312 April 1, 2014

DIRECTIONS This exam has two parts. Part A has 4 shorter questions, (5 points each so total 20 points) while Part B had 6 problems (12 points each, so total is 72 points). Maximum score is thus 92 points.

Closed book, no calculators or computers– but you may use one $3'' \times 5''$ card with notes on both sides. *Clarity and neatness count.*

PART A: Four short answer questions (5 points each, so 20 points).

A-1. Let A be a 3×3 real matrix two of whose eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = 1 - 2i$, with corresponding eigenvectors \mathbf{v}_1 and \mathbf{v}_2 , what are λ_3 and \mathbf{v}_3 ?

SOLUTION We know that complex eigenvalues come in pairs i.e. $\lambda_3 = \overline{\lambda_2} = 1 + 2i$ and $A\overline{\mathbf{v}_2} = \overline{A}\mathbf{v}_2 = \overline{\lambda_2}\overline{\mathbf{v}_2}$ hence $\mathbf{v}_3 = \overline{\mathbf{v}_2}$.

A-2. Given a *unit* vector $\mathbf{w} \in \mathbb{R}^n$, let $W = \text{span} \{\mathbf{w}\}$ and consider the linear map $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$T(\mathbf{x}) = 2 \operatorname{Proj}_W(\mathbf{x}) - \mathbf{x},$$

where $\operatorname{Proj}_W(\mathbf{x})$ is the orthogonal projection onto W. Show that T is one-to-one.

METHOD 1 We need to show that the kernel of T is trivial, so we need to solve:

$$2\operatorname{Proj}_W(\mathbf{x}) - \mathbf{x} = 0 \tag{1}$$

To the above equation we apply T again and obtain:

$$0 = T(2\operatorname{Proj}_W(\mathbf{x}) - \mathbf{x}) = 2\operatorname{Proj}_W(2\operatorname{Proj}_W(\mathbf{x}) - \mathbf{x}) - 2\operatorname{Proj}_W(\mathbf{x}) + \mathbf{x}$$

so:

$$0 = 4\operatorname{Proj}_{W}(\mathbf{x}) - 2\operatorname{Proj}_{W}(\mathbf{x}) - 2\operatorname{Proj}_{W}(\mathbf{x}) + \mathbf{x} = \mathbf{x}$$

Hence, the kernel of T is trivial, namely T is one-to-one.

METHOD 2 Since w is a unit vector, $\operatorname{Proj}_W(\mathbf{x}) = \langle \mathbf{x}, \mathbf{w} \rangle \mathbf{w}$ so equation (1) is

 $2\langle \mathbf{x}, \mathbf{w} \rangle \mathbf{w} = \mathbf{x}.$

Taking the inner product of this with \mathbf{w} gives $2\langle \mathbf{x}, \mathbf{w} \rangle = \langle \mathbf{x}, \mathbf{w} \rangle$ so $\langle \mathbf{x}, \mathbf{w} \rangle = 0$. Equation (1) then gives $\mathbf{x} = 0$.

METHOD 3 Let $P : \mathbb{R}^n \to \mathbb{R}^n$ be any projection, not necessarily orthogonal. It has the property $P^2 = P$. Define

$$T\mathbf{x} := cP\mathbf{x} - \mathbf{x}$$

for any constant c. Claim: if $c \neq 1$, then ker T = 0 (so T is one-to-one). To see this, apply P to both sides of $cP\mathbf{x} = \mathbf{x}$ and use $P^2 = P$ to find $cP\mathbf{x} = P\mathbf{x}$. Because $c \neq 1$, then $P\mathbf{x} = 0$. Consequently $\mathbf{x} = 0$.

A-3. Let A be an invertible matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$ and corresponding eigenvectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$. What can you say about the eigenvalues and eigenvectors of A^{-1} ? Justify your response.

SOLUTION Since A invertible we have that $A\vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i \neq 0$ for all *i*. Hence by multiplying $\frac{1}{\lambda_i}A^{-1}$ on both sides of $A\vec{v}_i = \lambda_i \vec{v}_i$ we obtain that $A^{-1}\vec{v}_i = \frac{1}{\lambda_i}\vec{v}_i$. So $\frac{1}{\lambda_1}, \ldots, \frac{1}{\lambda_k}$ are the eigenvalues of A^{-1} with the same corresponding eigenvectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$.

- A-4. Let A be an $n \times n$ real self-adjoint matrix and **v** an eigenvector with eigenvalue λ . Let $W = \text{span} \{ \mathbf{v} \}.$
 - a) If $\mathbf{w} \in W$, show that $A\mathbf{w} \in W$ SOLUTION If $\mathbf{w} \in W$ then $\mathbf{w} = k\mathbf{v}$. Hence $A\mathbf{w} = Ak\mathbf{v} = k\lambda\mathbf{v} \in W$.
 - b) If $\mathbf{z} \in W^{\perp}$, show that $A\mathbf{z} \in W^{\perp}$. SOLUTION If $\mathbf{z} \in W^{\perp}$ then $\langle \mathbf{z}, \mathbf{v} \rangle = 0$. Hence $\langle A\mathbf{z}, \mathbf{v} \rangle = \langle \mathbf{z}, A^*\mathbf{v} \rangle = \langle \mathbf{z}, A\mathbf{v} \rangle = \langle \mathbf{z}, \lambda \mathbf{v} \rangle = \lambda \langle \mathbf{z}, \mathbf{v} \rangle = 0$ so $A\mathbf{z} \in W^{\perp}$.

PART B Six questions, 12 points each (so 72 points total).

B-1. Let A be a real symmetric matrix. Say that \vec{v}_1 and \vec{v}_2 are eigenvectors corresponding to distinct eigenvalues $\lambda_1 \neq \lambda_2$. Show that \vec{v}_1 and \vec{v}_2 are orthogonal.

SOLUTION We have that:

$$\lambda_1 \langle \vec{v}_1, \vec{v}_2 \rangle = \langle A\vec{v}_1, \vec{v}_2 \rangle = \langle \vec{v}_1, A^*\vec{v}_2 \rangle = \langle \vec{v}_1, A\vec{v}_2 \rangle = \lambda_2 \langle \vec{v}_1, \vec{v}_2 \rangle$$

$$(\lambda_1 - \lambda_2) \langle \vec{v}_1, \, \vec{v}_2 \rangle = 0$$

so $\langle \vec{v}_1, \vec{v}_2 \rangle = 0$, namely \vec{v}_1, \vec{v}_2 are orthogonal.

METHOD 2 Since $\lambda_1 \neq \lambda_2$, at least one of them is not zero. Say $\lambda_2 \neq 0$. Now use

$$\langle A\vec{v}_1, A\vec{v}_2 \rangle = \lambda_1 \lambda_2 \langle \vec{v}_1, \vec{v}_2 \rangle$$

and

$$\langle A\vec{v}_1, A\vec{v}_2 \rangle = \langle \vec{v}_1, A^2\vec{v}_2 \rangle = \lambda_2^2 \langle \vec{v}_1, \vec{v}_2 \rangle.$$

Now use $\lambda_2 \neq 0$ and $\lambda_1 \neq \lambda_2$ to conclude $\langle \vec{v}_1, \vec{v}_2 \rangle = 0$.

- B-2. In a large city, a car rental company has three locations: the Airport, the City, and the Suburbs. One has data on which location the cars are returned daily:
 - RENTED AT AIRPORT: 5% are returned to the City and 20% to the Suburbs. The rest are returned to the Airport.
 - RENTED IN CITY : 10% are returned to Airport, 10% returned to Suburbs.
 - RENTED IN SUBURBS: 20% are returned to the Airport and 5% to the City.

If initially there are 20 cars at the Airport, 65 in the city, and 15 in the suburbs, what is the long-term distribution of the cars?

SOLUTION The equations we obtain from the information given is:

$$x_{k+1} = 0.75x_k + 0.1y_k + 0.2z_k$$
$$y_{k+1} = 0.05x_k + 0.8y_k + 0.05z_k$$
$$z_{k+1} = 0.2x_k + 0.1y_k + 0.75z_k$$

where x's, y's, z's correspond to information about cars rented at airport, city, suburbs respectively. Hence the transition matrix is:

$$T = \begin{pmatrix} 0.75 & 0.1 & 0.2\\ 0.05 & 0.8 & 0.05\\ 0.2 & 0.1 & 0.75 \end{pmatrix}$$

which is regular, so we need to find the probability eigenvector corresponding to the eigenvalue $\lambda = 1$. Solving $T\vec{v} = \vec{v}$ we obtain $v_1 = v_3$ and $v_2 = 0.5v_3$ where $\vec{v} = (v_1, v_2, v_3)$. Hence a eigenvector corresponding to $\lambda = 1$ is:

$$\vec{v} = \begin{pmatrix} 2\\1\\2 \end{pmatrix}$$

so the unique probability eigenvector corresponding to $\lambda = 1$ is:

$$1/5\vec{v} = \begin{pmatrix} 0.4\\ 0.2\\ 0.4 \end{pmatrix}.$$

Now, initially there were 100 cars so the long term distribution is: 40 cars at the Airport, 20 at the City and 40 at the Suburbs.

B-3. Let
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix}$$
.

- a) What is the dimension of the image of A? Why? SOLUTION Since im A is the column-space of A we have that im $A = \text{span}\{(1,1,1)\}$, so $\dim(\operatorname{im} A) = 1$.
- b) What is the dimension of the kernel of A? Why?

SOLUTION From rank-nullity theorem and part (a) we have that $\dim(\ker A) = 2$.

c) What are the eigenvalues of A? Why?

SOLUTION 1: Since ker A is 2-dimensional it implies that two of the eigenvalues of A are 0. Also since the trace of A (which is equal to 4) is equal to the sum of its eigenvalues we have that the third eigenvalue is equal to 4.

SOLUTION 2: Using the characteristic polynomial of A which is: $p_A(\lambda) = \lambda^2(4 - \lambda)$.

d) What are the eigenvalues of $B := \begin{pmatrix} 4 & 1 & 2 \\ 1 & 4 & 2 \\ 1 & 1 & 5 \end{pmatrix}$? Why? [HINT: B = A + 3I].

Solution If λ is an eigenvalue of A and **v** the corresponding eigenvector then:

$$B\mathbf{v} = (A+3I)\mathbf{v} = (\lambda+3)\mathbf{v}$$

hence using part (c) we obtain that the eigenvalues of B are 3, 3, 7.

B-4. For certain polynomials $\mathbf{p}(t)$, $\mathbf{q}(t)$, and $\mathbf{r}(t)$, say we are given the following table of inner products:

$\langle \ , \ \rangle$	р	q	r
p	4	0	8
q	0	1	0
r	8	0	50

For example, $\langle \mathbf{q}, \mathbf{r} \rangle = \langle \mathbf{r}, \mathbf{q} \rangle = 0$. Let *E* be the span of **p** and **q**.

- a) Compute $\langle \mathbf{p}, \mathbf{q} + \mathbf{r} \rangle$. Solution $\langle \mathbf{p}, \mathbf{q} + \mathbf{r} \rangle = \langle \mathbf{p}, \mathbf{q} \rangle + \langle \mathbf{p}, \mathbf{r} \rangle = 0 + 8 = 8$
- b) Compute $\|\mathbf{q} + \mathbf{r}\|$. SOLUTION $\|\mathbf{q} + \mathbf{r}\| = \sqrt{\langle \mathbf{q}, \mathbf{q} \rangle + \langle \mathbf{r}, \mathbf{r} \rangle + 2\langle \mathbf{q}, \mathbf{r} \rangle} = \sqrt{1 + 50 + 0} = \sqrt{51}$
- c) Find the orthogonal projection $\operatorname{Proj}_{E}\mathbf{r}$. [Express your solution as linear combinations of \mathbf{p} and \mathbf{q} .]

Solution $\operatorname{Proj}_{E}\mathbf{r} = \frac{\langle \mathbf{r}, \mathbf{p} \rangle}{\langle \mathbf{p}, \mathbf{p} \rangle} \mathbf{p} + \frac{\langle \mathbf{r}, \mathbf{q} \rangle}{\langle \mathbf{q}, \mathbf{q} \rangle} \mathbf{q} = 2\mathbf{p}.$

d) Find an orthonormal basis of the span of \mathbf{p} , \mathbf{q} , and \mathbf{r} . [Express your results as linear combinations of \mathbf{p} , \mathbf{q} , and \mathbf{r} .]

SOLUTION We apply the Gram-Schmidt process to first get an orthogonal basis $\{\mathbf{u}_1, Bu_2, Bu_3\}$ and then the orthonormal basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$:

$$\mathbf{u}_{1} = \mathbf{q} \quad \text{and} \quad \mathbf{e}_{1} = q$$
$$\mathbf{u}_{2} = \mathbf{p} - \frac{\langle \mathbf{p}, \mathbf{q} \rangle}{\langle \mathbf{q}, \mathbf{q} \rangle} \mathbf{q} = \mathbf{p} \quad \text{and} \quad \mathbf{e}_{2} = 1/2\mathbf{p}$$
$$\mathbf{u}_{3} = \mathbf{r} - \frac{\langle \mathbf{r}, \mathbf{q} \rangle}{\langle \mathbf{q}, \mathbf{q} \rangle} \mathbf{q} - \frac{\langle \mathbf{r}, \mathbf{p} \rangle}{\langle \mathbf{p}, \mathbf{p} \rangle} \mathbf{p} = \mathbf{r} - 2\mathbf{p} \quad \text{and}$$
$$\mathbf{e}_{3} = \frac{\mathbf{r} - 2\mathbf{p}}{\sqrt{34}} \quad \text{since} \quad \|\mathbf{r} - 2\mathbf{p}\|^{2} = \langle \mathbf{r}, \mathbf{r} \rangle + 4\langle \mathbf{p}, \mathbf{p} \rangle - 4\langle \mathbf{r}, \mathbf{p} \rangle = 50 + 16 - 32 = 34.$$

B-5. An $n \times n$ matrix is called *nilpotent* if A^k equals the zero matrix for some positive integer k. (For instance, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is nilpotent.)

a) If λ is an eigenvalue of a nilpotent matrix A, show that $\lambda = 0$. (Hint: start with the equation $A\vec{x} = \lambda \vec{x}$.)

SOLUTION We have $A\vec{x} = \lambda \vec{x}$ so $A^k \vec{x} = \lambda^k \vec{x}$. Hence $\lambda^k \vec{x} = 0$ so $\lambda = 0$ since $\vec{x} \neq 0$ (because it is an eigenvector).

b) Show that if A is both nilpotent and diagonalizable, then A is the zero matrix. [Hint: use Part a).]

SOLUTION From part (a) we deduce that all eigenvalues of A are zero, Hence A is similar to the zero matrix hence $A = S(\mathbf{0})S^{-1} = \mathbf{0}$ where **0** the zero matrix and S some matrix.

c) Let A be the matrix that represents $T: \mathcal{P}_5 \to \mathcal{P}_5$ (polynomials of degree at most 5) given by differentiation: Tp = dp/dx. Without doing any computations, explain why A must be nilpotent.

B–6. Let $A : \mathbb{R}^k \to \mathbb{R}^n$ be a linear map. Show that

$$\dim(\ker A) - \dim(\ker A^*) = k - n.$$

In particular, for a square matrix, $\dim(\ker A) = \dim(\ker A^*)$.

SOLUTION 1: Since in \mathbb{R}^k , $(\operatorname{im} A^*)^{\perp} = \ker A$, we have that

 $\dim(\ker A) + \dim(\operatorname{im} A^*) = k$

Also, since $A^* : \mathbb{R}^n \to \mathbb{R}^k$, by the rank-nullity theorem

$$\dim(\ker A^*) + \dim(\operatorname{im} A^*) = n$$

Then we subtract to obtain:

$$\dim(\ker A) - \dim(A^*) = k - n.$$

SOLUTION 2: Since $A^* : \mathbb{R}^n \to \mathbb{R}^k$, by a homework problem dim im $A = \dim \operatorname{im} A^*$. Using rank-nullity theorem we have:

 $\dim(\ker A) - \dim(\ker A^*) = (\dim \mathbb{R}^k - \dim \operatorname{im} A) - (\dim \mathbb{R}^n - \dim \operatorname{im} A^*) = k - n$